Exercises on Lie groups

Spring term 2018, Sheet 9

Hand in before 10 o'clock on 4th May 2018 Mail box of Sven Raum in MA B2 475 Sven Raum Gabriel Jean Favre

Exercise 1

In this exercise we study the universal cover of SO(n), which is the so-called spin group Spin(n).

(i) Denote by $T\mathbb{R}^n$ the tensor algebra of \mathbb{R}^n . We define

$$\operatorname{Cl}(n) \coloneqq \operatorname{T}\mathbb{R}^n / v \otimes v - \|v\|^2.$$

Show that map $\mathbb{R}^n \to \operatorname{Cl}(n)$ is injective and that $\operatorname{Cl}(n)$ enjoys the following universal property: whenever $i : \mathbb{R}^n \to A$ is a vector space homomorphism into a unital algebra such that $i(v)^2 = ||v||^2 1$, then there is a unique unital homomorphism $\operatorname{Cl}(n) \to A$ making the following diagram commutative.

(ii) Show that for the elements from the standard basis $e_1, \ldots, e_n \in \mathbb{R}^n$ the following relation holds in Cl(n).

$$e_i e_j = \begin{cases} -e_j e_i & i \neq j \\ e_j e_i & i = j \end{cases}$$

- (iii) Show that Cl(n) is finite dimensional.
- (iv) Let

$$Pin(n) = \{v_{i_1} \cdots v_{i_k} \in Cl(n) \mid v_{i_1}, \dots, v_{i_k} \in \mathbb{R}^n \text{ and } \|v_{i_1}\| = \dots \|v_{i_k}\| = 1\}$$

Show that Pin(n) is the group with the multiplication inherited from Cl(n).

- (v) Denote by $\operatorname{Cl}^{\operatorname{even}}(n) = \bigcup_{k \in \mathbb{N}} \operatorname{Cl}^{2k}(n)$ the even part of $\operatorname{Cl}(n)$. Show that $\operatorname{Cl}^{\operatorname{even}}(n) \leq \operatorname{Cl}(n)$ is a subalgebra.
- (vi) Define the spin group as

$$\operatorname{Spin}(n) = \operatorname{Pin}(n) \cap \operatorname{Cl}^{\operatorname{even}}$$

and show that it is a connected Lie group.

- (vii) Show that $v_1 \cdots v_k \mapsto (v_1 \cdots v_k)^t = v_k \cdots v_1$ defines an anti-automorphism of Cl(n), that is $(xy)^t = y^t x^t$.
- (viii) Show that for formula $\rho(g)v \coloneqq gvg^{t}$ defines a smooth action of $\operatorname{Spin}(n)$ on $\mathbb{R}^{n} = \operatorname{Cl}^{1}(n)$ and the induced homomorphism of Lie groups $\operatorname{Spin}(n) \to \operatorname{SO}(n)$ is the universal cover.