Exercises on Lie groups

Spring term 2018, Sheet 8

Hand in before 10 o'clock on 27th April 2018 Mail box of Sven Raum in MA B2 475 Sven Raum Gabriel Jean Favre

Exercise 1

In this exercise we investigate the fundamental group of Lie groups. Recall from algebraic topology that if (X,x) is a pointed topological space, then its fundamental group $\Gamma = \pi_1(X,x)$ is a discrete group acting on the universal cover $\Gamma \curvearrowright (\tilde{X},\tilde{x})$ such that the quotient map $\tilde{X} \to \tilde{X}/\Gamma \cong X$ is the universal covering map.

- (i) Let $H \subseteq G$ be a normal closed subgroup of a connected Lie group. Show that the projection $G \to G/H$ is a local isomorphism if and only if H is discrete in G.
- (ii) Show that every discrete normal subgroup of a connected Lie group is central.
- (iii) If G is a connected Lie group, show that there is a natural embedding $\pi_1(G) \to \tilde{G}$.
- (iv) Conclude that the fundamental group of a connected Lie group is commutative.

Exercise 2 (Exercise 2.5.9 from the course).

Let $(X_1, x_1), (X_2, x_2)$ be pointed topological spaces and prove the following statements.

(i) If $(Y_i, y_i) \rightarrow (X_i, x_i)$ is a covering for $i \in \{1, 2\}$, then also

$$(Y_1 \times Y_2, (y_1, y_2)) \rightarrow (X_1 \times X_2, (x_1, x_2))$$

is a covering map.

(ii) If there are universal coverings $(\tilde{X}_i, \tilde{x}_i) \rightarrow (X_i, x_i)$ for $i \in \{1, 2\}$, then

$$(\tilde{X}_1 \times \tilde{X}_2, (\tilde{x}_1, \tilde{x}_2)) \rightarrow (X_1 \times X_2, (x_1, x_2))$$

is a universal covering

Exercise 3 (Exercise 2.5.10 from the course).

Let Y,X be pointed topological spaces admitting a universal cover. Let $Y\to X$ be a pointed map. Show that there is a unique pointed map $\tilde{Y}\to \tilde{X}$ such that the following diagram commutes

Exercise 4.

In this exercise we calculate the fundamental group of the Lie group $SO(n, \mathbb{R})$. It makes use of methods from advanced algebraic topology.

(i) Show that for $n \ge 2$, we have $SO(n, \mathbb{R})/SO(n-1, \mathbb{R}) \cong S^{n-1}$ and that the translation action

$$SO(n, \mathbb{R}) \sim SO(n, \mathbb{R})/SO(n-1, \mathbb{R})$$

is conjugate to the standard action $SO(n, \mathbb{R}) \curvearrowright S^{n-1}$.

- (ii) Show inductively that $SO(n, \mathbb{R})$ is (path) connected for every $n \in \mathbb{N}_{>0}$.
- (iii) Show that $SO(n,\mathbb{R})$ is an $SO(n-1,\mathbb{R})$ -principal bundle over S^{n-1} , that is fixing the projection $p:SO(n,\mathbb{R})\to S^{n-1}$, for every $x\in S^{n-1}$ there is a neighbourhood $x\in U\subset S^{n-1}$ and an $SO(n-1,\mathbb{R})$ -equivariant isomorphism

$$U \times SO(n-1, \mathbb{R}) \xrightarrow{\cong} p^{-1}(U)$$

$$\downarrow^{\pi_U} \qquad \qquad \downarrow^p$$

$$U \xrightarrow{\mathrm{id}} U$$

(iv) From a principal, one obtains a short exact sequence of homotopy groups. Use the short exact sequence of homotopy groups obtained from this previous bundle

$$\pi_2(\mathbf{S}^{n-1}) \to \pi_1(\mathbf{SO}(n-1,\mathbb{R})) \to \pi_1(\mathbf{SO}(n,\mathbb{R})) \to \pi_1(\mathbf{S}^{n-1}) \to 1$$

in order to calculate $\pi_1(SO(n,\mathbb{R}))$ inductively. Use the fact that $SO(3,\mathbb{R}) \cong \mathbb{R}P^3$.