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Notice
The lecture ofMonday 5thMarchwill be not take place. Instead, there will be a lecture on Fridaz 2ndMarch
between 13.15 and 15 o’clock in room MA A3 31.

Exercise 1.
Show that a manifold is connected if and only if it is path connected.

Exercise 2.
Recall that an algebraA is called associative if and only if (a ⋅b) ⋅c = a ⋅(b ⋅c) holds for all a, b, c ∈ A. Further,
a Lie algebraA is called 2-step nilpotent if [[a, b], c] = 0 for all a, b, c ∈ A. One can show that the Lie algebra
of a Lie group is 2-step nilpotent if and only if the Lie group is 2-step nilpotent in the group theoretical sense.

Show that a Lie algebra is associative if and only if it is 2-step nilpotent.

Exercise 3.
Prove that Lie(Rn) = span{ ∂

∂xi
∣ i ∈ {1, . . . , n}}.

Exercise 4.
Let A be an (associative)R-algebra. Show that

[a, b] = ab − ba

introduces a Lie algebra structure on A. Deduce that D1(M) and D1(M,p) are Lie algebras for all differ-
entiable manifoldsM and all p ∈M .

Exercise 5.
Let G,H be Lie groups. Use the identifications Lie(G) ≅ D1(G,e) and Lie(H) ≅ D1(H,e) to show that
Lie(G ×H) ≅ Lie(G) × Lie(H) as Lie algebras.


