Exercises on Lie groups

Spring term 2018, Sheet 2

Hand in before 10 o'clock on 2nd March 2018 Mail box of Sven Raum in MA B2 475 Sven Raum Gabriel Jean Favre

Notice

The lecture of Monday 5th March will be not take place. Instead, there will be a lecture on Fridaz 2nd March between 13.15 and 15 o'clock in room MA A3 31.

Exercise 1.

Show that a manifold is connected if and only if it is path connected.

Exercise 2.

Recall that an algebra A is called associative if and only if $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ holds for all $a, b, c \in A$. Further, a Lie algebra A is called 2-step nilpotent if [[a, b], c] = 0 for all $a, b, c \in A$. One can show that the Lie algebra of a Lie group is 2-step nilpotent if and only if the Lie group is 2-step nilpotent in the group theoretical sense.

Show that a Lie algebra is associative if and only if it is 2-step nilpotent.

Exercise 3.

Prove that $\operatorname{Lie}(\mathbb{R}^n) = \operatorname{span}\{\frac{\partial}{\partial x_i} \mid i \in \{1, \ldots, n\}\}.$

Exercise 4.

Let A be an (associative) R-algebra. Show that

$$[a,b] = ab - ba$$

introduces a Lie algebra structure on A. Deduce that $\mathcal{D}^1(M)$ and $\mathcal{D}^1(M,p)$ are Lie algebras for all differentiable manifolds M and all $p \in M$.

Exercise 5.

Let G, H be Lie groups. Use the identifications $\text{Lie}(G) \cong \mathcal{D}^1(G, e)$ and $\text{Lie}(H) \cong \mathcal{D}^1(H, e)$ to show that $\text{Lie}(G \times H) \cong \text{Lie}(G) \times \text{Lie}(H)$ as Lie algebras.