Exercises on Lie groups

Spring term 2018, Sheet 12

Hand in before 10 o'clock on 18th May 2018 Mail box of Sven Raum in MA B2 475 Sven Raum Gabriel Jean Favre

Exercise 1

Let \mathfrak{g} be a finite dimenensional Lie algebra.

(i) Show that \mathfrak{g} is nilpotent if and only its lower central series defined by

$$\mathfrak{g}_1 = \mathfrak{g}$$
 $\mathfrak{g}_{n+1} = [\mathfrak{g}_n, \mathfrak{g}]$

terminates, that is there is some $n \in \mathbb{N}$ such that $\mathfrak{g}_n = 0$.

(ii) Show that every finite dimensional nilpotent Lie algebra is solvable.

Exercise 2

Let G be a connected Lie group. Show that G is nilpotent if and only if Lie(G) is nilpotent.

Exercise 3

Prove Lie's theorem: every solvable Lie algebra $\mathfrak{g} \leq \mathfrak{gl}(n, \mathbb{C})$ has a common eigenvector.

Exercise 4.

Show that the strictly upper triangular matrices are nilpotent and that they are equal to the derived Lie algebra of the upper triangular matrices.