Exercises on Lie groups

Spring term 2018, Sheet 10

Hand in before 10 o'clock on 4th May 2018 Mail box of Sven Raum in MA B2 475 Sven Raum Gabriel Jean Favre

Exercise 1

In this exercise we investigate the relation between kernels, normal subgroups and Lie ideals.

- (i) Show that the closed normal subgroups of a Lie group G are exactly the kernels of Lie homomorphisms $G \to H$.
- (ii) Show that the Lie ideals of a Lie algebra $\mathfrak g$ are exactly the kernels of Lie algebra homomorphisms $\mathfrak g \to \mathfrak h$.
- (iii) Let $\pi: G \to H$ be a Lie group homomorphism and write $N = \ker \pi$. Denote by $\pi_* : \text{Lie}(G) \to \text{Lie}(H)$ the derivative of π and denote its kernel by $\mathfrak{n} = \ker \pi_*$. Show that $\text{Lie}(N) = \mathfrak{n}$.

Exercise 2

In this exercise we compare the internal and the external semi-direct product of Lie algebras.

(i) Let g be a Lie algebra and denote by

$$Der(\mathfrak{g}) = \{ \delta : \mathfrak{g} \to \mathfrak{g} \mid [\delta(X), \delta(Y)] = [\delta(X), Y)] + [X, \delta(Y)] \}$$

its derivation Lie algebra. Show that $Der(\mathfrak{g})$ is a Lie algebra with respect to the commutator bracket

$$[\delta_1, \delta_2] = \delta_1 \circ \delta_2 - \delta_2 \circ \delta_1$$

(ii) Let \mathfrak{g} , \mathfrak{h} be Lie algebras and $\alpha : \mathfrak{g} \to \mathrm{Der}(\mathfrak{h})$ a Lie algebra homomorphism. Show that the vector space $\mathfrak{h} \oplus \mathfrak{g}$ equipped with the bracket

$$[(X_1, Y_1), (X_2, Y_2)] = ([X_1, \alpha_{Y_1}(X_2)] - [X_2, \alpha_{Y_2}(X_1)], [Y_1, Y_2])$$

is a Lie algebra, which will be the semi-direct product Lie algebra $\mathfrak{h} \rtimes \mathfrak{g}$. Further show that the natural injections $\mathfrak{g}, \mathfrak{h} \hookrightarrow \mathfrak{h} \rtimes \mathfrak{g}$ are Lie algebra homomorphisms and that $\mathfrak{h} \unlhd \mathfrak{h} \rtimes \mathfrak{g}$ is an ideal.

(iii) Let $\mathfrak{n} \unlhd \mathfrak{g}$ be an ideal of a Lie algebra and assume that there is some Lie subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ such that $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h}$ as vector spaces. Show that there is a natural Lie algebra homomorphism $\mathfrak{h} \to \operatorname{Der}(\mathfrak{n})$ and a unique Lie algebra homomorphism $\mathfrak{n} \rtimes \mathfrak{h} \to \mathfrak{g}$ restricting to the inclusion maps of \mathfrak{n} and \mathfrak{h} .

Exercise 3

We inductively define the upper central series of a group G by putting $Z_1 = \mathcal{Z}(G)$ equal to the centre and

$$Z_n = \{g \in G \mid gZ_{n-1} \in \mathcal{Z}(G/Z_{n-1})\}.$$

A group is called nilpotent, if there is some $n \in \mathbb{N}$ such that $Z_n = G$.

- (i) Show that every nilpotent group is solvable.
- (ii) Decide which of the following group is solvable and nilpotent:
 - $\mathbb{C}^2 \rtimes_{\alpha} \mathbb{R}$ where $\alpha_t(z_1, z_2) = (e^{2\pi i t} z_1, e^{2\pi i \theta t} z_2)$ for some fixed irrational $\theta \in \mathbb{R} \setminus \mathbb{Q}$.
 - The Heisenberg group $\operatorname{Heis}(\mathbb{R})$.
 - The group of invertible upper triangular matrices

$$IT(n) = \begin{pmatrix} * & * & * & \dots & * \\ 0 & * & * & \dots & * \\ \dots & & & & \\ \dots & & & & \\ 0 & \dots & & & * & * \\ 0 & \dots & & & 0 & * \end{pmatrix}$$

• The group of unipotent upper triangular matrices

$$UT(n) = \begin{pmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ \dots & & & & \\ \dots & & & & \\ \dots & & & & \\ 0 & \dots & & & 1 & * \\ 0 & \dots & & & 0 & 1 \end{pmatrix}$$

Exercise 4.

Show that SU(2) is the set of its commutators,

$$SU(2) = \{ [q, h] \mid q, h \in SU(2) \}.$$