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Exercise 1In this exercise we investigate the relation between kernels, normal subgroups and Lie ideals.
(i) Show that the closed normal subgroups of a Lie group G are exactly the kernels of Lie homomor-phismsG→H .
(ii) Show that the Lie ideals of a Lie algebra g are exactly the kernels of Lie algebra homomorphisms

g→ h.
(iii) Letπ ∶ G→H be a Lie group homomorphism andwriteN = kerπ. Denote byπ∗ ∶ Lie(G)→ Lie(H)the derivative of π and denote its kernel by n = kerπ∗. Show that Lie(N) = n.

Exercise 2In this exercise we compare the internal and the external semi-direct product of Lie algebras.
(i) Let g be a Lie algebra and denote by

Der(g) = {δ ∶ g→ g ∣ [δ(X), δ(Y )] = [δ(X), Y )] + [X,δ(Y )]}

its derivation Lie algebra. Show thatDer(g) is a Lie algebra with respect to the commutator bracket
[δ1, δ2] = δ1 ○ δ2 − δ2 ○ δ1

(ii) Let g,h be Lie algebras andα ∶ g→ Der(h) a Lie algebra homomorphism. Show that the vector space
h⊕ g equipped with the bracket

[(X1, Y1), (X2, Y2)] = ([X1, αY1(X2)] − [X2, αY2(X1)], [Y1, Y2])

is a Lie algebra, which will be the semi-direct product Lie algebra h⋊g. Further show that the naturalinjections g,h↪ h ⋊ g are Lie algebra homomorphisms and that h ⊴ h ⋊ g is an ideal.
(iii) Let n ⊴ g be an ideal of a Lie algebra and assume that there is some Lie subalgebra h ≤ g such that

g = n⊕ h as vector spaces. Show that there is a natural Lie algebra homomorphism h→ Der(n) anda unique Lie algebra homomorphism n ⋊ h→ g restricting to the inclusion maps of n and h.

Exercise 3We inductively define the upper central series of a groupG by putting Z1 = Z(G) equal to the centre and
Zn = {g ∈ G ∣ gZn−1 ∈ Z(G/Zn−1)} .

A group is called nilpotent, if there is some n ∈ N such that Zn = G.



(i) Show that every nilpotent group is solvable.
(ii) Decide which of the following group is solvable and nilpotent:

• C2 ⋊α R where αt(z1, z2) = (e2πitz1, e2πiθtz2) for some fixed irrational θ ∈ R ∖Q.
• The Heisenberg group Heis(R).
• The group of invertible upper triangular matrices

IT(n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
...
...
... ∗ ∗
0 . . . 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

• The group of unipotent upper triangular matrices

UT(n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
...
...
... 1 ∗
0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Exercise 4.Show that SU(2) is the set of its commutators,
SU(2) = {[g, h] ∣ g, h ∈ SU(2)} .
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