Homology and Cohomology

Spring term 2018, Trial exam

Time: 3 hours Max 90 points	Sven Raum Haoqing Wu
Name:	
Sciper:	

General explanations

- The exam takes 3 hours, or equivalently 180 minutes.
- You can achieve a maximum of 90 points, while points for all questions sum up to 115.

Question 1 (Euler characteristic, 20 points)

In this question X denotes a topological space with a finite Δ -complex structure and $S^n = \{t \in \mathbb{R}^{n+1} \mid ||t||_2 = 1\}$ denotes the n-sphere.

- (i) Give the definition of the Euler characteristic $\chi(X)$ of a finite Δ -complex X.
- (ii) Show that $\chi(X) = \sum_{i=0}^{\infty} \operatorname{rank} H_i(X)$, where H_i denotes singular homology of X.
- (iii) Calculate $\chi(S^n)$.

Question 2 (Eilenberg-Steenrod axioms, 15 points)

- (i) Give the definition of a homology theory in the sense of Eilenberg-Steenrod.
- (ii) Prove that singular homology is additive.

Question 3 (Cellular homology of surfaces, 30 points)

In this question Σ_2 denotes the standard surface of genus 2, modelled as the quotient of a regular 8-gon by the identification of its edges $a, b, a^{-1}, b^{-1}, c, d, c^{-1}, d^{-1}$.

- (i) Let X be a CW-complex. Give the definition of the cellular chain complex of X, including its boundary maps.
- (ii) Find a CW-complex structure on Σ_2 . Hint: first construct a CW-structure on the regular 8-gon and derive from this a CW-complex structure on Σ_2 .
- (iii) Calculate cellular homology of Σ_2 with respect to the CW-complex structure exhibited in (ii).

Question 4 (Projective resolutions, 30 points)

In this question R denotes an arbitrary ring and M is an arbitrary M-module.

- (i) Give the definition of a projective module over R.
- (ii) Give the definition of a projective resolution of M over R.
- (iii) Show that there is a unique projective resolution of M over R up to chain homotopy equivalence.

Question 5 (Group cohomology, 20 points)

In this question $G = \mathbb{Z}/2\mathbb{Z}$ denotes the cyclic group of order two and M denotes an arbitrary $\mathbb{Z}G$ -module.

- (i) Find a free resolution F_* of the trivial $\mathbb{Z}G$ -module \mathbb{Z} , satisfying $F_k \cong \mathbb{Z}G$ for all $k \in \mathbb{N}$.
- (ii) Calculate group cohomology $H^*(\mathbb{Z}/2\mathbb{Z}, M)$ in terms of invariants and coinvariants of M.