Homology and Cohomology

Spring term 2018, Trial exam

Time: 3 hours
Sven Raum
Max 90 points
Haoqing Wu

Name:
Sciper:

General explanations

- The exam takes 3 hours, or equivalently 180 minutes.
- You can achieve a maximum of 90 points, while points for all questions sum up to 115 .

Question 1 (Euler characteristic, 20 points)
In this question X denotes a topological space with a finite Δ-complex structure and $\mathrm{S}^{n}=$ $\left\{t \in \mathbb{R}^{n+1} \mid\|t\|_{2}=1\right\}$ denotes the n-sphere.
(i) Give the definition of the Euler characteristic $\chi(X)$ of a finite Δ-complex X.
(ii) Show that $\chi(X)=\sum_{i=0}^{\infty} \operatorname{rank} \mathrm{H}_{i}(X)$, where H_{i} denotes singular homology of X.
(iii) Calculate $\chi\left(\mathrm{S}^{n}\right)$.

Question 2 (Eilenberg-Steenrod axioms, 15 points)
(i) Give the definition of a homology theory in the sense of Eilenberg-Steenrod.
(ii) Prove that singular homology is additive.

Question 3 (Cellular homology of surfaces, 30 points)
In this question Σ_{2} denotes the standard surface of genus 2 , modelled as the quotient of a regular 8-gon by the identification of its edges $a, b, a^{-1}, b^{-1}, c, d, c^{-1}, d^{-1}$.
(i) Let X be a CW-complex. Give the definition of the cellular chain complex of X, including its boundary maps.
(ii) Find a CW-complex structure on Σ_{2}. Hint: first construct a CW-structure on the regular 8-gon and derive from this a CW-complex structure on Σ_{2}.
(iii) Calculate cellular homology of Σ_{2} with respect to the CW-complex structure exhibited in (ii).

Question 4 (Projective resolutions, 30 points)

In this question R denotes an arbitrary ring and M is an arbitrary M-module.
(i) Give the definition of a projective module over R.
(ii) Give the definition of a projective resolution of M over R.
(iii) Show that there is a unique projective resolution of M over R up to chain homotopy equivalence.

Question 5 (Group cohomology, 20 points)

In this question $G=\mathbb{Z} / 2 \mathbb{Z}$ denotes the cyclic group of order two and M denotes an arbitrary $\mathbb{Z} G$-module.
(i) Find a free resolution F_{\star} of the trivial $\mathbb{Z} G$-module \mathbb{Z}, satisfying $F_{k} \cong \mathbb{Z} G$ for all $k \in \mathbb{N}$.
(ii) Calculate group cohomology $\mathrm{H}^{*}(\mathbb{Z} / 2 \mathbb{Z}, M)$ in terms of invariants and coinvariants of M.

