Exercises on Homology and Cohomology

Spring term 2018, Sheet 7

Hand in before 10 o'clock on 16th April 2018
Sven Raum
Mailbox of Sven Raum in MA B2 475
Haoqing Wu

Exercise 1 (easy)

In this exercise we calculate the homology of spheres of positive dimension

$$
\mathrm{H}_{k}\left(\mathrm{~S}^{n}\right)= \begin{cases}\mathbb{Z} & \text { if } k \in\{0, n\} \\ 0 & \text { otherwise }\end{cases}
$$

(i) Show that there are open contractible sets $U, V \subset \mathrm{~S}^{n}$ such that

- $\mathrm{S}^{n}=U \cup V$, and
- $U \cap V \sim_{h} \mathrm{~S}^{n-1}$ are homotopy equivalent.
(ii) Use the Meyer-Vietoris exact sequence of Exercise 2 to inductively calculate the homology of S^{n}.

Exercise 2 (medium)

In this exercise we provide an alternative and frequently useful way to apply excision in homology.
(i) (Algebraic Meyer-Vietoris sequence) Consider a commutative diagram of R-moudles whose rows are exact such that the maps $\left(\varphi_{n}\right)_{n}$ are isomorphisms:

Show that there is an exact sequence

$$
\ldots \longrightarrow C_{n}^{\prime \prime} \xrightarrow{\left(i_{n}, \varphi_{n}^{\prime \prime}\right)} C_{n}^{\prime} \oplus D_{n}^{\prime \prime} \stackrel{\varphi_{n}-j_{n}}{\longrightarrow} D_{n}^{\prime} \xrightarrow{\delta_{n}} C_{n-1}^{\prime \prime} \longrightarrow
$$

where $\delta_{n}=\partial_{n} \circ \varphi_{n}^{-1} \circ q_{n}: D_{n}^{\prime} \rightarrow C_{n-1}^{\prime \prime}$.
(ii) (Topological Meyer-Vietoris sequence) Let $\left(\mathrm{H}_{n}\right)_{n \in \mathbb{N}}$ be a homology theory and let $X=U^{\circ} \cup V^{\circ}$ be a cover a topological space X by the interior of two subsets $U, V \subset X$. Use excision to apply the algebraic Meyer-Vietoris sequence to the diagram of long exact sequences induced by the inclusion $(U, U \cap V) \hookrightarrow(X, V)$

to obtain an exact sequence

$$
\ldots \longrightarrow \mathrm{H}_{n}(U \cap V) \longrightarrow \mathrm{H}_{n}(U) \oplus \mathrm{H}_{n}(V) \longrightarrow \mathrm{H}_{n}(X) \longrightarrow \mathrm{H}_{n-1}(U \cap V) \longrightarrow \ldots
$$

Exercise 3 (difficult)

In this exercise we provide a way to calculate relative homology. We say that a pair (X, A) has the homotopy extension property (hep), if whenever $\varphi_{t}: A \rightarrow Z, t \in[0,1]$ is a homotopy of continuous maps and $\psi_{0}: X \rightarrow Z$ is an extension of φ_{0}, then there is some homotopy of continuous maps $\psi_{t}: X \rightarrow Z$ extending $\left(\varphi_{t}\right)_{t \in[0,1]}$. We will see examples of pairs with the homotopy extension property later.
Let (X, A) be a pair of topological spaces with the hep. Show that

$$
\mathrm{H}_{*}(X, A) \cong \mathrm{H}_{*}(X / A,\{A\}) \cong \tilde{\mathrm{H}}_{*}(X / A)
$$

induced by the quotient $\operatorname{map}(X, A) \rightarrow(X / A,\{A\})$ and the identification $\tilde{H}_{*}(X) \cong \mathrm{H}_{*}(X,\{p t\})$.

