Exercises on Homology and Cohomology

Spring term 2018, Sheet 6

Hand in before 10 o'clock on 9th April 2018 Mailbox of Sven Raum in MA B2 475 Sven Raum Haoqing Wu

Exercise 1 (easy)

Let $\varphi : C \to C$ be a endomorphism of a chain complex of R-modules that is chain homotopic to the identity, say there is an R-module map $h : C_* \to C_{*+1}$ satisfying $\partial h + h\partial = \operatorname{id}_C - \varphi$. Show that for all $n \in \mathbb{N}_{\geq 1}$ the n-fold iteration φ^n is homotopic with id_C via the map $\sum_{0 \le i \le n} h\varphi^i$.

Exercise 2 (medium)

Prove the Five Lemma: given a commutative diagram of R-modules with exact rows such that f and h are isomorphisms, then g is an isomorphism too.

Exercise 3 (difficult)

The complex projective space of dimension n is the space of one-dimensional subspaces of \mathbb{C}^{n+1} modelled as the quotient space of the unit sphere in \mathbb{C}^{n+1} by the diagonal multiplication action $S^1 \curvearrowright \mathbb{C}^{n+1}$ defined by $\lambda(x_0, \ldots, x_n) = (\lambda x_0, \ldots, \lambda x_n)$. We define $\mathbb{CP}^n \stackrel{\text{def}}{=} \{x \in \mathbb{C}^{n+1} \mid ||x|| = 1\}/S^1$.

- (i) Provide a decomposition $\mathbb{C}P^n = \mathbb{C}P^{n-1} \cup \mathbb{C}^n$.
- (ii) Show that $\mathbb{C}P^n \setminus \{pt\}$ is homotopy equivalent with $\mathbb{C}P^{n-1}$.
- (iii) Let H_* be a homology theory in the sense of Eilenberg-Steenrod with coefficient group A. Compute $H_*(\mathbb{C}P^n)$.