
Homotopy Invariance of Relative Singular homology
Francesco Fournier Facio. March 25, 2018

The aim of this presentation is to show that relative singular homology satis�es the third Eilenberg-
Steenrod axiom for homology: homotopy invariance. More precisely, we set out to prove the following
theorem.

Theorem 1. Let f, g : (X,A) → (Y,B) be morphisms between pairs of topological spaces. If f and g
are homotopic, then they induce the same morphisms on relative singular homologies.

The algebraic tool that will allow us to prove this theorem is that of chain homotopy. Let C and D be
two chain complexes. An easy way to create a chain map f : C → D is to chose random morphisms
sn : Cn → Dn+1, which gives us two di�erent maps Cn → Dn+1 → Dn and Cn → Cn−1 → Dn. Adding
them we de�ne fn = dDn+1sn + sn−1d

C
n : Cn → Dn. One can then easily check that f is a chain map.

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

dCn+1 dCn

fnsn sn−1

dDn+1 dDn

De�nition 2. A chain map f : C → D is null homotopic if there are morphisms sn : Cn → Dn+1

such that fn = dDn+1sn + sn−1d
C
n . Two chain maps f, g : C → D are chain homotopic if their di�erence

f − g is null homotopic. The corresponding {sn} form a chain homotopy from f to g.

Two chain homotopic maps are "similar" in a sense that will be made rigorous shortly, and is intuitively
analogous to that of homotopic continuous maps: we can transform one into the other using a chain
homotopy. While it is fairly easy to generate null homotopic chain maps, these maps are particularly
simple: a null homotopic map is, by de�nition, a chain map that is chain homotopic to the zero map.
However, we can use this fact to get an important criterion for when two chain maps induce the same
morphisms on homologies.

Lemma 3. If f and g are chain homotopic, then they induce the same morphisms on homologies.

Proof. By considering f − g, it su�ces to show that if f is null homotopic, then Hn(f) : Hn(C) →
Hn(D) is the zero morphism. Suppose that there exist maps sn : Cn → Dn + 1 such that fn =
dDn+1sn + sn−1d

C
n . Let x ∈ ker dCn . In what follows, square brackets denote the class of an element in

the respective homology group.

Hn(f)([x]) = [fn(x)] = [dDn+1sn(x) + sn−1 d
C
n (x)︸ ︷︷ ︸
=0

] = [dDn+1(sn(x))︸ ︷︷ ︸
∈ im dDn+1

] = [0].

Now that we have this criterion, we are ready to prove a non-relative version of theorem 1.

Theorem 4. Let f, g : X → Y be continuous maps between topological spaces. If f and g are homo-

topic, then they induce the same morphisms on singular homologies.

Proof. Let F : X × I → Y be a homotopy from f to g, and let f∗ and g∗ denote the induced chain
maps C(X) → C(Y ). We will use F to provide diagonal maps Cn(X) → Cn+1(Y ), and then show
that these form a chain homotopy from g∗ to f∗.
Let σ : ∆n → X be an element of Cn(X). Then we have a map Fσ := F ◦ (σ, idI) : ∆n× I → X × I →
Y . Let [v0, . . . , vn] := ∆n × {0} and [w0, . . . , wn] := ∆n+1 × {1}. These two n-simplices verify:
Fσ|∆n×{0} : x 7→ F (σ(x), 0) = f(σ(x)) = f∗(σ)(x) and similarly Fσ|∆n×{1} = g∗(σ). Note that ∆n × I
has (n+1) dimensions. Most importantly, for all i = 0, . . . , n the region [v0, . . . , vi, wi, . . . wn] ⊂ ∆n×I
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is an (n + 1) simplex, and so F iσ := Fσ|[v0,...,vi,wi,...wn] ∈ Cn+1(Y ). This allows us to de�ne the prism

operators:

Pn : Cn(X)→ Cn+1(Y ) : σ 7→
n∑
i=0

(−1)i · F iσ.

We claim that dYn+1Pn = g∗n − f∗n − Pn−1d
X
n . In the following calculations, we drop the subscripts for

clarity. We start with:

dY P (σ) = dY
(∑

i

(−1)i · F iσ
)

=
∑
i

(−1)i · dY (F iσ) =
∑
i

(−1)i ·
(∑
j≤i

(−1)j · Fσ|[v0,...,v̂j ,...,wn] +

+
∑
j≥i

(−1)j+1 · Fσ|[v0,...,ŵj ,...,wn]

)
=: S(i=j) + S(i 6=j);

where S(i=j) denotes the terms for which i = j and similarly for S(i 6=j). We will calculate these two
expressions separately. On one hand:

S(i=j) =
∑
i

Fσ|[v0,...,v̂i,wi,...,wn] −
∑
i

Fσ|[v0,...,vi,ŵi,...,wn] = Fσ|[v̂0,w0,...,wn] − Fσ|[v0,...,vn,ŵn]+

+
∑
i 6=0

(
Fσ|[v0,...,v̂i,wi,...,wn] − Fσ|[v0,...,vi−1,ŵi−1,...,wn]︸ ︷︷ ︸

=0

)
= Fσ|∆n×{1} − Fσ|∆n×{0} = g∗(σ)− f∗(σ).

On the other hand:

PdX(σ) = P
(∑

j

(−1)j · σ|[v0,...,v̂j ,...,vn]

)
=
∑
j

(−1)j · P (σ|[v0,...,v̂j ,...,vn]) =
∑
j

(−1)j ·

·
(∑
i<j

(−1)i · Fσ|[v0,...,vi,wi,...,ŵj ,...wn] +
∑
i>j

(−1)i−1 · Fσ|[v0,...,v̂j ,...,vi,wi,...wn]

)
= −S(i 6=j).

Thus dY P = S(i=j) + S(i 6=j) = g∗ − f∗ − PdX , which implies by de�nition that P is a chain homotopy
from g∗ to f∗. By lemma 3, f∗ and g∗ induce the same morphisms on homologies, so the same goes
for f and g.

This proves that singular homology is homotopy invariant. However, in order to satisfy the Eilenberg-
Steenrod axions, we have to prove this for relative singular homology. Luckily, almost all the work has
been done in the proof of theorem 4.

Proof of theorem 1. Let f, g : (X,A) → (Y,B) be morphisms between pairs of topological spaces.
Let F be a homotopy from f to g in the category of pairs of topological spaces. This means that
F : X × I → Y is a homotopy from f to g, seen as continuous maps, such that for all t ∈ I, the map
F (−, t) : X → Y takes A to B. Then the prism operator Pn : Cn(X) → Cn+1(Y ) introduced
in the proof of theorem 4 takes Cn(A) to Cn+1(B), so the induced map on the quotient groups
P̄n : Cn(X,A) → Cn+1(Y,B)is well-de�ned. Finally, the equality dYn+1Pn = g∗n − f∗n − Pn+1d

X
n is

preserved after taking the quotient, so the maps induced by f and g on the relative chain complexes
are chain homotopic. Once again, lemma 3 implies that f and g induce the same morphisms on relative
homologies.

We conclude that, as far as homotopy invariance is concerned, relative singular homology behaves like
a homology theory in the sense of the Eilenberg-Steenrod axioms.
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