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This lecture introduces to the basics of unitary representations of topological groups. While
classical harmonic analysis studies functions on abelian topological groups, abstract harmonic analysis
is concerned with unitary representations of locally compact groups by (functional) analytic means.

1 Topological groups

The very first aim of the lecture is to understand all terminology involved in the announcement. Let
us recall the definition of a group.

Definition 1.0.1. A group is a set G with (i) associative multiplication G × G → G ∶ (g, h) ↦ g ⋅ h,
(ii) a neutral element e ∈ G and (iii) an inversion G → G ∶ g ↦ g−1. satisfying the commonly known
axioms.

Example 1.0.2. Examples of groups that every mathematician must have seen before include:

• Sn, An the symmetric and the alternating groups.

• R the real line.

• S1 the circle group.

• O(n), U(n) the orthogonal and the unitary groups.

• GL(n,R), GL(n,C) the general linear groups.

While Sn and An are finite groups and can be studied as such, it is advantageous to take the
natural topology of all the remain examples into account.

Definition 1.0.3 (Topological groups). A topological group is a group G with a topology on G such
that multiplication and inversion are continuous maps.

Considering groups as topological groups when possible is not only natural, but will also provide us with
additional tools to study them. Finally, we can better control problems of logical kind, by restricting
our considerations to separable groups or second countable groups.

Let us first mention that regardless of the use of additional information provided by a topology,
every group can be turned into a topological group in a trivial fashion.

Example 1.0.4. Every group is a topological group with the discrete and with the indiscrete topology.

Exercise 1.0.5. Let us consider the previously mentioned examples of groups. While Sn, An are natu-
rally discrete, all other examples are instructive.

• R and C become topological groups with their usual topology – thanks to the triangle inequality.
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• S1 inherits a topology from the embedding S1 ⊂ C as vectors of length 1.

• GL(n,R), GL(n,C) inherit a topology from the embedding GL(n,K) ⊂ Mn(K) ⊂ Kn
2
.

• O(n), U(n) carry the topology of pointwise convergence.

One might notice that, since O(n) ⊂ GL(n,R) and U(n) ⊂ GL(n,C), we actually have two natural
topologies on O(n) and U(n). It is not difficult however, to show that they agree. This is a reflection
of a more general phenomenon, which we describe for the unitary group U(H) of a (complex) Hilbert
space. Before doing so, let us recall one useful point of view on topology.

Recall 1.0.6 (Nets). A directed set I is a partial order such that for all i , j ∈ I there is k ∈ I satisfying
k ≥ i and k ≥ j . A net in a topological space X is a map I → X from a directed set into X. We note
a net by (xi)i∈I . Such a net converges towards x ∈ X if for every neighbourhood U of x there is io ∈ I
such that xi ∈ U for all i ≥ i0. The following proposition says that a topological space is completely
described by knowing its convergent nets.

Proposition 1.0.7. Let X be a topological space and A ⊂ X. Then

A = {x ∈ X ∣∃(xi)i , xi ∈ A such that xi → x} .

Without proof.

Proposition 1.0.8. Let H be a (complex) Hilbert space. Then the topology of pointwise convergence
on U(H) and the topology of pointwise weak convergences on U(H) agree.

Proof. Let (ui)i be a net in U(H) and u ∈ U(H). We show that ui → u pointwise if and only if ui → u
pointwise weakly. Since convergence in H implies weak converges in H, the forward implication is
clear. So let us assume that ui → u pointwise weakly and let ξ ∈ H. Then

∥uξ − uiξ∥2 = ∥uξ∥2 − 2 Re⟨uξ, uiξ⟩ + ∥uiξ∥2 = 2∥ξ∥2 − 2 Re⟨uξ, uiξ⟩→ 0 .

This shows that ui → u pointwise.

Notation 1.0.9. If H denotes a Hilbert space, we call the topology of pointwise converges on U(H)
the strong topology.

Let us add two more examples of topological groups.

Exercise 1.0.10 (Permutation groups). Let X be some set and denote by Sym(X) the group of all
bijections of X. Then Sym(X) is called the permutation group of X. Check that the following two
topologies on Sym(X) agree and turn it into a topological group.

• The topology of pointwise convergence.

• The coarsest topology on Sym(X) which is a group topology and turns every point stabiliser
Sym(X)x = {g ∈ Sym(X) ∣ gx = x} into an open subgroup.
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Hint. Denote by τpw the topology of pointwise convergence on Sym(X) and by τstab the coarsest
topology on Sym(X) which is a group topology and turns every point stabiliser Sym(X)x , x ∈ X into
an open subgroup. First show that τpw is a group topology. Then note that Sym(X)x ∈ τpw for all
x ∈ X. Together, these two facts imply that τpw ⊃ τstab. It remains to show the converse inclusion.
To this end, note that a basis of τstab is given by the sets

Ux,y = {g ∈ Sym(X) ∣ gx = y} x, y ∈ X .

For fixed x, y ∈ X pick some g ∈ Sym(X) satisfying gx = y . Then Ux,y = g Sym(X)x . Since τstab is a
group topology, the map G ∋ h ↦ gh ∈ G is a homeomorphism of (Sym(X), τstab). So Sym(X)x ∈ τstab
implies g Sym(X)x ∈ τstab. This proves τstab ⊃ τpw. ,

Example 1.0.11 (Profinite groups). If (Fi , ϕi)i∈I is a projective system of finite groups, then the profi-
nite limit K = lim←Ð(Fi , ϕi) carries the profinite topology, which is the coarsest topology making all all
natural projections K → Fi continuous. The profinite topology is a group topology and it is compact.
For example, (i) Galois groups of field extensions are of this kind. Their topology is referred to as the
Krull topology. (Actually all profinite groups appear like this). (ii) Every residually finite group admits
a profinite completion, into which it injects as a dense subgroup.

1.1 A characterisation of topological groups

After having described some basic examples of topological groups, let us turn to a characterisations of
theirs, which requires a single map to be continuous. This characterisation can be useful to smoothen
arguments and to avoid technical repetitions in proofs involving topological groups.

Proposition 1.1.1. A group G with topology is a topological group if and only if the map G × G →
G ∶ (g, h)↦ gh−1 is continuous.

Proof. Assume that G is a topological group. Then (g, h)↦ gh−1 is a composition of the continuous
maps (g, h)↦ (g, h−1) and (g, h)↦ gh, so it is continuous.

Assuming that (g, h) ↦ gh−1 is continuous, we see that g−1 = eg−1 and hence the inversion
is a composition of the two continuous maps g ↦ (e, g) and (g, h) ↦ gh−1. It follows that also
multiplication is a composition of continuous maps (g, h) ↦ (g, h−1) and (g, h) ↦ gh−1. So G is a
topological group.

1.2 Constructions of topological groups

In order to extend our zoo of examples, we note in the next proposition that being a topological groups
is preserved under a number of natural constructions available for groups and topological spaces. Its
proof is more lengthy than its content deserves, since there are a few traps from elementary topology
to avoid. It uses Proposition 1.1.1 freely.

Proposition 1.2.1.

(i) Every subgroup of a topological group is a topological group.

(ii) The product of topological groups is a topological group.

(iii) Quotients of topological groups are topological groups.
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Proof. On (i). Let H ≤ G be a subgroup of a topological group. Then H×H → H ∶ (h1, h2)↦ (h1h−12 )
is a restriction of the continuous map G × G → G ∶ (g1, g2) ↦ G, since the subspace topology on
H ×H ⊂ G ×G agrees with the product topology of H ×H. So H ×H is a topological group.

On (ii). Let (Gi)i∈I be a family of topological groups. In order to show that the map
∏i∈I Gi ×∏i∈I Gi →∏i∈I Gi ∶ ((gi), (hi))↦ (gih−1i ) is continuous, it suffices to check that its composi-
tion with the quotient maps ∏i∈I Gi → Gi0 , i0 ∈ I, remains continuous. So pick some i0 ∈ I. Then the
following diagram of maps between sets commutes.

∏i∈I Gi ×∏i∈I Gi //

��

∏i∈I Gi

��
Gi0 ×Gi0 // Gi0 .

Here the bottom row denotes the map Gi0 ×Gi0 → Gi0 ∶ (g, h)↦ gh−1. This shows continuity of

((∏
i∈I
Gi ×∏

i∈I
Gi)→∏

i∈I
Gi → Gi0) = ((∏

i∈I
Gi ×∏

i∈I
Gi)→ Gi0 ×Gi0 → Gi0) ,

since the latter is a composition of continuous maps. This shows that ∏i∈I Gi is a topological group.
On (iii). Let N�G be a normal subgroup of a topological group. We first show that the quotient

map π ∶ G ↪ G/N is open. If U ⊂ G is open, then π−1(π(U)) = ⋃g∈N Ug is open in G. Hence, π(U) is
open in G/N. So it follows that there is a natural homeomorphism between G/N×G/N with its product
topology and (G×G)/(N×N) with its quotient topology. We deduce that in order to check continuity
of G/N ×G/N → G/N ∶ (gN, hN) ↦ gh−1N, it suffices to check continuity of its precomposition with
the quotient map G ×G → G/N ×G/N. Consider the following commutative diagram.

G ×G //

��

G

��
G/N ×G/N // G/N ,

where the top row denotes the map G ×G → G ∶ (g, h)→ gh−1. This shows that

(G ×G → G/N ×G/N → G/N) = (G ×G → G → G/N)

is a composition of continuous maps. This shows that G/N is a topological group.

1.3 Homomorphisms of topological groups

After having defined topological groups, we obviously are interested in the correct notion of morhpisms
between them.

Definition 1.3.1 (Homomorphisms and isomorphisms). A homomorphism G → H between topo-
logical groups G,H is a continuous group homomorphism ϕ ∶ G → H. An isomorphism G → H is a
bijective homomorphism whose inverse is a homomorphism of topological groups.

Exercise 1.3.2. Construct a non-trivial group homomorphism R → Q. Show that this homomorphism
considered as a map R→ R cannot be continuous.
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Hint. Use a Hamel basis of R over Q in order to construct a non-trivial Q-linear functional on R. Then
note that continuous maps send connected spaces to connected spaces. ,

Let us give a useful tool allowing to check more easily whether a given group homomorphisms is
a homomorphism of topological groups.

Definition 1.3.3. Let ϕ ∶ X → Y be a map between topological spaces. We say that ϕ is continuous
at a point x ∈ X if for every net xi → x we have ϕ(xi)→ ϕ(x).

Proposition 1.3.4. Let G,H be topological groups. A group homomorphism G → H is continuous if
and only if it is continuous at e ∈ G.

Proof. Let ϕ ∶ G → H be a group homomorphism. We only need to show that continuity of ϕ at e
implies continuity of ϕ. To this end let gi → g be a convergent net in G. Then gig−1 → gg−1 = e. So
ϕ(gig−1)→ ϕ(e) = e. This implies ϕ(gi)→ ϕ(g−1)−1 = ϕ(g). So ϕ is continuous.

1.4 Some technical observations on topological groups

We end this section by pointing out some useful technical statements that hold true in every topological
group.

Lemma 1.4.1. Let G be a topological group. The following statements hold true.

• Every neighbourhood of the identity contains a symmetric neighbourhood of the identity.

• Every neighbourhood U ⊂ G of the identity contains a neighbourhood V of the identity such that
V 2 ⊂ U.

• If A,B ⊂ G are compact, then AB ⊂ G is compact.

• If A ⊂ G is compact and B ⊂ G is closed, then AB ⊂ G and BA are closed.

• If A ⊂ G is open and B ⊂ G is an arbitrary subset, then AB and BA are open.

Proof. If O ∋ e is open, then O ∩ O−1 is a symmetric open set containing e. In particular, every
neighbourhood of the identity contains a symmetric neighbourhood of the identity.

Let U ⊂ G be a neighbourhood of e. We may assume that U is open. Then the inverse image of U
under the multiplication map m ∶ G×G → G ∶ (g, h)↦ gh is open and contains (e, e). By the definition
of the product topology there are open sets V1, V2 ∋ e such that V1, V2 ⊂ U. Putting V ∶= V1 ∩ V2, we
found an open set V ∋ e satisfying

V 2 ⊂ V1V2 ⊂ U .

Let A,B ⊂ G be compact subsets. Then AB = m(A ×B) is the image of a compact set under a
continuous map. Hence AB is compact.

Let A ⊂ G be compact and B ⊂ G be closed. We show that AB is closed. To this end let (gi) be a
convergent net with gi ∈ AB. There are nets (ai) and (bi) in A and B, respectively, such that aibi = gi
for all i . Since A is compact, we may pass to a subnet of (gi) and assume that (ai) converges to
some a ∈ A. Then bi = a−1i gi → a−1g, which lies in the closed set B. So gi → a(a−1g) ∈ AB. This
shows that AB is closed. Similarly, it follows that BA is closed.

If A ⊂ G is open and B is arbitrary, then AB = ⋃g∈B Ab and BA = ⋃g∈G bA are unions of open sets
and hence open.
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2 Hausdorff groups

In this section we will investigate when the underlying space of a topological group is Hausdorff. It
turns out that this is automtic under very mild assumptions. While non-Hausdorff groups can be
interesting in principal (think of algebraic groups with their Zariski topology for example), doing any
kind of analysis on topological groups automatically puts us into the Hausdorff setting, as we will see.

We start by recall two separation axioms from elementary topology.

Recall 2.0.1. Let X be a topological space.

• X is called a Kolmogorov space or a T0 space if for every two distinct points x, y ∈ X there
exists an open set U ⊂ X such that either x ∈ U, y ∉ U or y ∈ U, x ∉ U.

• X is called a T1-space if for every two distinct points x, y ∈ X there is an open set U ⊂ X such
that x ∈ U and y ∉ U. Equivalently, every point in X is closed.

• X is called a Hausdorff space if for every two distinct points x, y ∈ X there are disjoint open set
U, V ⊂ X such that x ∈ U, y ∈ V .

Let us formally fix the notion of a Hausdorff group.

Definition 2.0.2. A Hausdorff group is a topological group whose underlying topology is Hausdorff.

2.1 T0-groups are Hausdorff

We will show that every topological group whose topology is T0 already follows Hausdorff. This
establishes a big gap between being Hausdorff or not for topological groups. We start by giving a
short characterisation of Hausdorff spaces in terms of homomorphisms.

Proposition 2.1.1. Let X be a topological space. Then X is Hausdorff if and only if the diagonal in
X ×X is closed.

Proof. Assume that the diagonal ∆ ⊂ X × X is closed and let x, y ∈ X be distinct points. There is
a basic open U × V ⊂ X × X ∖ ∆ which contains (x, y). Then U ∋ x , V ∋ y and U ∩ V = ∅, since
U × V ∩∆ = ∅.

Now assume that X is Hausdorff. We show that X×X∖∆ is open. To this end let (x, y) ∈ X×X∖∆.
There are disjoint open sets U, V ⊂ X such that U ∋ x , V ∋ y . Then X ×X ∖∆ ⊃ U × V ∋ (x, y).

Proposition 2.1.2. Let G be a topological group. Then the following statements are equivalent.

• G is a T0-space.

• {e} ⊂ G is closed.

• G is a T1-space.

• G is a Hausdorff space.

Proof. Assume that G is a T0-space. We show that {e} is closed in G. To this end, it suffices to
exhibit for every g ∈ G ∖ {e} some open set U ⊂ G such that g ∈ U but e ∉ U. Take g ∈ G. Since G is
a T0-space there is some open set U ⊂ G such that either g ∈ U, e ∉ U or e ∈ U, g ∉ U. In the former
case we are done. In the latter case consider the set U−1g. Then g ∈ U−1g, since e ∈ U−1. Further,
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we have the equivalence e ∈ U−1g⇔ g−1 ∈ U−1⇔ g ∈ U, which shows that e ∉ U−1g. It follows that
{e} is closed in G.

If {e} ⊂ G is closed, then g{e} = {g} is closed for all g ∈ G. Hence G is a T1-space.
Assume that G is a T1 space. Consider the inverse image of {e} under the map G ×G ∋ (g, h)↦

gh−1 ∈ G, which must be closed. This is the diagonal of G, since gh−1 = e if and only if g = h. So the
diagonal of G ×G is closed. Now Proposition 2.1.1 applies and shows that G is a Hausdorff space.

Finally, every Hausdorff space is a T0-space, which finishes the proof of the proposition.

2.2 The Kolmogorov quotient and the Hausdorff quotient of a topological group

We show that every topological group has a maximal Hausdorff quotient and that every continuous
map (not necessarily a group homomophism) factors through this quotient. This gives strong support
to the idea that any study of topological groups by analytic means must restrict considerations to
Hausdorff groups.

We start by introducing the Kolmogorov quotient of a topological space.

Definition 2.2.1. Let X be a topological space. Two points x, y ∈ X are called topologically indistin-
guishable, if for every open subset U ⊂ X, we have x ∈ U⇔ y ∈ U.

Proposition 2.2.2. Let X be a topological space. Then topological indistinguishability is an equiva-
lence relation on X, which we denote by ∼. The quotient X/ ∼ is a T0-space.

Proof. One checks right away that topological indistinguishably is is an equivalence relation on X. We
show that X/ ∼ is a T0-space. Let π ∶ X → X/ ∼ be the quotient map and U ⊂ X open and x ∈ X. If
x ∈ π(U) then there is y ∈ U such that x ∼ y . But this implies x ∈ U, since U is open. We showed
π−1(π(U)) = U.

If now [x] ≠ [y] are different points in X/ ∼, then x and y are topologically distinguishable in X.
So there is an open subset U ⊂ X such that either x ∈ U, y ∉ U or y ∈ U, x ∉ U. Renaming x and
y , we may assume that the former is the case. Since π−1(π(U)) = U, it follows that π(U) ⊂ X/ ∼ is
open and [y] ∉ π(U). So [x], [y] are topologically distinguishable in X/ ∼. This shows that X/ ∼ is a
T0-space.

The quotient X → X/ ∼ from the previous proposition is called the Kolmogorov quotient of X. It
actually enjoys the following universal property.

Proposition 2.2.3. Let X be a topological space and π ∶ X → Y the Kolmogorov quotient of X. Then
every continuous map f ∶ X → Z into a T0-space factors through π.

Proof. We claim that topologically indistinguishable points in X have the same image under f . To
prove this, assume that x, y ∈ X satisfy f (x) ≠ f (y). Then there is an open set U ⊂ Z such that
either f (x) ∈ U, f (y) ∉ U or f (y) ∈ U, f (x) ∉ U. Renaming x and y we may assume that the former
is the case. Let O ∶= f −1(U), which is an open subset of X. Then x ∈ O but y ∉ O, showing that x, y
are topologically distinguishable in X. This proves our claim and shows that f factors through the
Kolmogorov quotient.

We will now show that the Kolmogorov quotient of a topological group is a quotient onto a
Hausdorff group. This quotient is universal.

Proposition 2.2.4. Let H ≤ G be a subgroup of a topological group G. Then the closure H is a
subgroup of G. If H �G is normal, then H �G is normal too.
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Proof. This is elementary.

Exercise 2.2.5. Let G be a topological group and N �G a normal subgroup. Show that the quotient
G/N is a Hausdorff group if and only if N ≤ G is closed.

Hint. Use the fact that G/N is a Hausdorff group if and only if {N} ⊂ G/N is closed. ,

Proposition 2.2.6. Let G be a topological group and N ∶= {e}�G. Then G/N is a Hausdorff group
and G → G/N is the Kolmogorov quotient of G.

Proof. By Proposition 2.2.4, we know that N � G is a closed normal subgroup, so that G/N is
a Hausdorff group by Exercise 2.2.5. Denote by ∼ the equivalence relation of being topologically
indistinghuishable in G. In order to show that G → G/N is the Kolmogorov quotient of G, we have to
show that g ∼ h⇔ gh−1 ∈ N. Since g ∼ h⇔ gh−1 ∼ e, this is equivalent to showing N = [e], where
[e] denotes the equivalence class of e with respect to ∼.

Since N ⊂ G is closed and contains e, the inclusion [e] ⊂ N follows. We prove the converse
inclusion. If g ∼ e ∼ h, then gh−1 ∼ e follows, which shows that [e] is a subgroup of G. Further,
g[e] = [g] = [e]g for all g ∈ G implying that [e] is normal in G. The quotient G/[e] is the Kolmogorov
quotient of G, since [g] = [h]⇔ [gh−1] = [e]. In particular, G/[e] is a T0-space and hence Hausdorff
by Proposition 2.1.2. So [e] ⊂ G is closed subgroup by Exercise 2.2.5. Since e ∈ [e], this implies
N ⊂ [e], which was to be shown.

Definition 2.2.7. Let G be a topological group and N ∶= {e}. Then G/N is called the Hausdorff
quotient of G.

The universality of the Kolmogorov quotient (Proposition 2.2.3) shows now the following universal
property of the Hausdorff quotient of a topological group. This corollary justifies to restrict our
considerations to Hausdorff groups in all subsequent sections.

Corollary 2.2.8. Let G be a topological group and N ∶= {e}� G. Then every continuous map from
G into a T0-space (such as R or C) factors through G → G/N.
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3 Unitary representations

Historically, the concept of a group arose in mathematics through the study of concrete groups of
symmetries. However, the modern point of view has changed perspectives. We nowadays fix a group
and then study all possible ways it can arise as group of symmetries of some class of objects. We will
restrict our attention first to topological vector spaces, then to Banach spaces and finally to Hilbert
spaces.

Definition 3.0.1 (Representation). G be a topological group and V a topological vector space. We
denote by GL(V ) the group of all continuous vector space isomorphisms with a continuous inverse. A
representation of G on V is a homomorphism G → GL(V ) such that the map G×V → V is continuous.

Remark 3.0.2. Note that the definition of a representation of G on V asks more then merely a ho-
momorphism of topological groups G → GL(V ), for GL(V ) carrying the topology of pointwise conver-
gence. This is equivalent to asking the map G × V → V to be separately continuous, which is weaker
than our assumption of (joint) continuity.

Example 3.0.3. Every topological group admits the trivial representation G → U(1) mapping all ele-
ments to the identity on C. Here are some other natural representations of certain classes of groups.

• The group Sym(X) admits the permutation representation on `2(X) permuting elements from
the natural orthonormal basis.

• The general linear groups are represented by the identical map GL(n,C)↷ Cn.

• Also the unitary groups are represented by their inclusion U(n)↪ GL(n,C).

• A character of an abelian group A is a homomorphism A→ S1. Every character corresponds to
a unitary representation by the natural identification S1 ≅ U(1).

Turning our attention to representations on a Banach space V for a moment, we obtain a useful
criterion to check whether a given homomorphism G → GL(V ) is a representation of not.

Proposition 3.0.4. Let G be a topological group and V a Banach space. An (abstract) homomorphism
π ∶ G → GL(V ) is a representation if and only if it is continuous and the map G → R>0 ∶ g ↦ ∥π(g)∥ is
locally bounded.

Proof. Assume that π ∶ G → GL(V ) is a representation. We first show continuity of π. Let gi → g

be a convergent net in G and let v ∈ V . Then π(gi)v → π(g)v , since G × V → V in particular is
continuous in the first variable. So π is continuous. By continuity of G × V → V , there is an open
neighbourhood U of e ∈ G and an open neighbourhood O of 0 ∈ V such that π(U)O ⊂ B(0,1). Since
O is open, there is some r > 0 such that B(0, r) ⊂ O. This means that ∥π(g)∥ < r−1 for all g ∈ U. It
follows that g ↦ ∥π(g)∥ is bounded on all sets of the form hU, h ∈ G, which proves local boundedness
of g ↦ ∥π(g)∥.

Assume now that G → GL(V ) is a continuous homomorphism such that g ↦ ∥π(g)∥ is locally
bounded. Since G → GL(V ) is continuous, the map g ↦ π(g)v is continuous for all v ∈ V . We then
obtain for g, h ∈ G and v ,w ∈ V

∥π(g)v − π(h)w∥ ≤ ∥π(h)∥∥π(h−1g)v −w∥ ≤ ∥π(h)∥(∥π(h−1g)v − v∥ + ∥v −w∥) ,

which is small if h and w are fixed and g is close to h and v is close to w . This shows continuity of
G × V → V and hence that π is a representation.
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We are next going to restrict our attention to representations on Hilbert spaces. This has two
reasons. First, from the analytic point of few, the theory of unitary representations in much better
tractable than other classes of representations. Second, unitary representations are the natural objects
of interest in physics, since symmetries must preserve measurements, the latter being modelled by
scalar products in Hilbert space.

Definition 3.0.5 (Unitary representation). Let G be a topological group and H a complex Hilbert
space. A unitary representation of G on H is a homomorphism (of topological groups) G → U(H).
We write (π,H) for this unitary representation. A representation π ∶ G → GL(V ) is called unitarisable
if there is a compatible scalar product on V with respect to which π is unitary.

Exercise 3.0.6. Show that the representation id ∶ GL(n,C)→ GL(n,C) is not unitarisable.

Hint. Check that if ⟨⋅, ⋅⟩ is a scalar product on Cn, then α ∈ Cid ⊂ GL(n,C) does not act as a unitary
unless ∣α∣ = 1. ,

Exercise 3.0.7. Show that every representation of a finite group on a Hilbert space is unitarisable.

Hint. Consider F → GL(H) be a representation of the finite group F on the Hilbert space H. Averaging
the scalar product of H over the action of F , obtain a new scalar product on H witnessing unitarisability
of F → GL(H). ,

Remark 3.0.8. There are groups without any non-trivial unitary representations. For example the
group H+([0,1]) of orientation preserving homeomorphisms of the interval is of this kind. It is however
non-trivial to prove this.

Definition 3.0.9 (Unitary equivalence of representations). Two unitary representations
(π1,H1), (π2,H2) of a topological group G are called unitarily equivalent, if there is a unitary
operator U ∶ H1 → H2 such that Uπ1(g) = π2(g)U for all g ∈ G. We write in this case π1 ≅ π2.

3.1 Constructions of unitary representations

Similar to the list of construction for topological groups in Section 1.2, we introduce a number of
important constructions for unitary representations.

Definition 3.1.1 (Direct sum of unitary representations). Let ν,π be unitary representations of a
topological group G on Hilbert spaces Hν and Hπ. The direct sum ν ⊕π is the unitary representation
G ↦ U(Hν ⊕Hπ) given by (ν ⊕ π)(g)(ξ⊕ η) = ν(g)ξ⊕ π(g)η. Similarly the direct sum of any family
of representations can be defined.

The direct sum construction allows us to make the following observation about having “sufficently
many” unitary representations. We say that a topological group G has sufficiently many unitary
representations if for every g ∈ G there is a unitary representation π ∶ G → U(H) such that π(g) ≠ idH.

Proposition 3.1.2. A topological group G has sufficiently many unitary representations if and only if
there is a Hilbert space H such that G ↪ U(H).

Proof. It is clear that G admits sufficiently many unitary representations if G ↪ U(H). Assume that
a topological group G admits sufficiently many unitary representations. Let (πg)g∈G be a family of
unitary representations such that πg(g) ≠ idHg for all g ∈ G. The direct sum representation ⊕g∈G πg
then defines an injective homomorphism G ↪ U(⊕g∈G Hg).

10
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Let us next turn to subrepresentations and the decomposition of unitary representations.

Definition 3.1.3 (Subrepresentations). Let π be a unitary representation of a topological group G
on a Hilbert space H. A closed subspace K ≤ H is π-invariant (or G-invariant) if π(g)K = K for all
g ∈ G. The induced map G → U(K) is a called a subrepresentation of π and denoted by π∣K . If ν is
another representation of G that is equivalent to a subrepresentation of π, we write ν ≤ π.

Proposition 3.1.4. Let π be a unitary representation of a topological group G on a Hilbert space H.
If K ≤ H is an invariant subspace, then K⊥ is an invariant subspace. Further, π ≅ π∣K ⊕ π∣K⊥ .

Proof. Let ξ ∈ K⊥ and η ∈ K. Then for all g ∈ G

⟨π(g)ξ, η⟩ = ⟨ξ,π(g−1)η⟩ = 0 .

So π(g)ξ ∈ K⊥, showing invariance of K⊥. It now easy to check that the unitary operator K ⊕K⊥ →
H ∶ (ξ, η)↦ ξ + η witnesses π∣K ⊕ π∣K⊥ ≅ π.

The previous proposition allows us to reasonably define the multiplicity of a subrepresentation.

Definition 3.1.5 (Multiplicity). Let π, ρ be unitary representations of a topological group G. Then
the multiplicity of ρ in π is the largest cardinal κ such that ⊕κ ρ ≤ π.

We next turn to the tensor product construction. It is well-compatible with the concept of unitary
representations.

Proposition 3.1.6. Let ν,π be unitary representations of a topological group G on Hilbert spaces Hν
and Hπ. For g ∈ G denote by (ν⊗π)(g) = ν(g)⊗π(g) ∈ B(Hν ⊗Hπ) the tensor product of operators.
Then ν ⊗ π ∶ G → U(Hν ⊗Hπ) is continuous.

Sketch of a proof. Since (ν⊗π)(g) is unitary for all g ∈ G, it suffices to check continuity on the dense
subset Hν ⊗alg Hπ of Hν ⊗Hπ, which is done by an elementary calculation.

Definition 3.1.7 (Tensor product of unitary representations). Let ν,π be unitary representations
of a topological group G on Hilbert spaces Hν and Hπ. The tensor product representation ν ⊗ π is
given by the map g ↦ ν(g)⊗ π(g) ∈ U(Hν ⊗Hπ).

The last construction we want to consider is the so called conjugate representation. The sub-
sequent proposition justifies thinking of conjugate representations a kind of inverse for the class of
(finite dimensional) unitary representations equipped with the tensor product.

Definition 3.1.8 (Conjugate Hilbert space). Let H be a Hilbert space. Then the conjugate Hilbert
space of H is H = {ξ ∣ ξ ∈ H} with scalar multiplication αξ = αξ and scalar product ⟨ξ, η⟩ = ⟨ξ, η⟩ for
all ξ, η ∈ H, α ∈ C.

Definition 3.1.9 (Conjugate representation). Let π be a unitary representation of a topological
group G on a Hilbert space H. Then π(g)ξ = π(g)ξ for ξ ∈ H defines a unitary representation of G
called the conjugate representation of π.

Proposition 3.1.10. Let π be a finite dimensional representation of a topological group G. Then the
trivial representation of G is a subrepresentation of π ⊗ π.

11
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Proof. It suffices to show that the natural representation of U(n) on Cn satisfies the conclusion of the
proposition. Let (ei)1≤i≤n be the standard ONB of Cn and let ξ = ∑i ei ⊗ ei ∈ Cn ⊗ Cn. For a unitary
U = (ui j) we obtain

(U ⊗ U)ξ =∑
i

Uei ⊗ Uei

= ∑
i ,j1,j2

uj1iej1 ⊗ uj2iej2

= ∑
i ,j1,j2

uj1iuj2iej1 ⊗ ej2

= ∑
j1,j2

δj1,j2ej1 ⊗ ej2

=∑
j

ej ⊗ ej

= ξ

So ξ is an invariant vector, which finishes the proof.

3.2 Irreducible representations and the Lemma von Schur

Let us start this section by fixing the notion of irreducible representations.

Definition 3.2.1 (Irreducible unitary representation). A unitary representation is called irreducible,
if it admits no non-trivial unitary subrepresentation.

The Lemma von Schur says roughly speaking that a unitary equivalence between two irreducible
unitary representations is unique up to scalar multiples. We present an operator algebraic proof, which
is the reason for introducing the following terminology.

Definition 3.2.2. Let S ⊂ B(H) be a set of bounded operators on a Hilbert space H.

• S acts topologically irreducible if the only closed S-invariant subspaces of H are {0} and H.

• The commutant of S is

S ′ = {T ∈ B(H) ∣∀S ∈ S ∶ ST = T} .

Recall 3.2.3. Let us recall some facts about operators on a Hilbert space that we need in the next
proposition.

• A set of operators is self-adjoint if it contains all the adjoints of its elements.

• The spectrum of an operator S ∈ B(H) is the set of all α ∈ C such that S−αidH is non-invertible.
It is denoted by σ(S) and generalises the set of eigenvalues of an operator on a complex vector
space.

• The spectral theorem for normal (in particular self-adjoint) operators on a Hilbert space provides
us with so called functional calculus. If S ∈ B(H) is a normal operator on a Hilbert space, then the
unital norm closed *-subalgebra of B(H) generated by S is isomorphic with C(σ(S)). So it makes
sense to write f (S) for f ∈ C(σ(S)) and this assignment is multiplicative: f (S)g(S) = (f g)(S)
for all f , g ∈ C(σ(S)).

12
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• An operator S on a Hilbert space is a projection if and only if σ(S) ⊂ {0,1}.

Proposition 3.2.4 (Lemma von Schur, Version for sets of operators). Let S ⊂ B(H) be a self-
adjoint set of operators on a Hilbert space H. Then S acts topologically irreducible on H if and
only if S ′ = C1.

Proof. Assume that S ′ = C1 and let K ≤ H be a closed S-invariant subspace of H. The orthogonal
projection p ∶ H → K ⊂ H is an element of B(H). It satisfies Sp = pSp for all S ∈ S. Because S is
self-adjoint, it follows that

Sp = pSp = (pS∗p)∗ = (S∗p)∗ = pS .
So p ∈ S ′. Hence p ∈ {0,1} meaning that K ∈ {{0},H}. This means that S acts topologically
irreducible.

Assume now that S acts topologically irreducible on H. Let T ∈ S ′. Since S is self-adjoint, S ′ is a
*-algebra. So we can split T in its real part ReT = 1

2
(T +T ∗) and its imaginary part ImT = 1

2i
(T −T ∗)

and hence assume T = T ∗. It then suffices to show that the spectrum σ(T ) of T is one point. Assuming
the contrary, we find non-zero continuous functions, f , g ∈ C(σ(T )) such that f ⋅ g = 0. Since S ′ is
a unital norm closed *-subalgebra of B(H), we have well-defined non-zero elements f (T ), g(T ) ∈ S ′.
By topological transitivity, the non-trivial S-invariant subspace f (T )H must be dense in H. This
contradicts g(T )f (T )H = {0}. So indeed the spectrum of T is one point, hence T ∈ C1.

Corollary 3.2.5 (Lemma von Schur, Version for representations). Let (π,H) be a unitary repre-
sentation of a group G. Then π is irreducible if and only if every bounded operator T ∈ B(H) such
that Tπ(g) = π(g)T for all g ∈ G satisfies T ∈ C1.

Proof. Since π is unitary, we have π(g)∗ = π(g−1). This implies that π(G) is a self-adjoint subset
of B(H). Hence π(G) acts topologically irreducible if and only if π(G)′ = C1, by Proposition 3.2.4.
Now π(G) acts topologically irreducible if and only if π is an irreducible representation. Further,
π(G)′ = C1, if and only if every bounded operator T ∈ B(H) satisfying Tπ(g) = π(g)T for all g ∈ G
lies in C1. This finishes the proof of the corollary.

Here is a application of the Lemma von Schur.

Exercise 3.2.6. Let G be an abelian group. Show that irreducible representations of G correspond to
its characters under the identification U(1) = S1.

Hint. It suffices to show that every irreducible unitary representation of an abelian group is one-
dimensional. ,

We finish this section by introducing the set of all isomorphism classes of irreducible representations
of a locally compact group.

Lemma 3.2.7. Let G be a locally compact group. Then every irreducible unitary representation of G
acts on a Hilbert space whose dimension is bounded by the cardinality of G. It follows that the class
of isomorphism classes of irreducible unitary representations of G is a set.

Proof. If (π,H) is an irreducible representation of G and ξ ∈ H is a non-zero vector, then Gξ is a
generating subset of H whose cardinality is bounded by the cardinality of G. The Gram-Schmidt
algorithm paired with transfinite induction hence shows that H admits an orthonormal basis whose
cardinality is bounded by the cardinality of G.

Definition 3.2.8. Let G be a locally compact group, then Ĝ denotes the set of all isomorphism classes
of irreducible unitary representations of G.

13
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4 Locally compact groups

In this chapter we will restrict our attention to topological groups whose underlying topology is locally
compact. Let us provide three reasons for this restriction. First, considering locally compact groups
only, provides us with a so called Haar measure on the group, which is a powerful tool in all questions
of analysis. (Section 4.2). Second, locally compact groups admit so the called regular representation.
This unitary representation is characterised by the amazing “absorbtion principle” and provides a natural
habitat for studying locally compact groups as naturally embedded into the unitary group of a Hilbert
space. (Section 4.3). Third, the technical side of our treatment automatically restricts us to locally
compact groups, since functional analytic considerations involving the space of compactly supported
continuous automatically force us to consider locally compact groups. After all, Cc(G) ≠ 0 implies the
existence of a relatively compact open subset in G.

Definition 4.0.1 (Locally compact groups). A topological space is called locally compact, if all its
points admit a compact neighbourhood. A Hausdorff group whose underlying topology is locally
compact, is called a locally compact group.

Let us consider which of the previously considered examples of topological groups (Exercises 1.0.5
& 1.0.10 and Examples 1.0.11) are locally compact.

Example 4.0.2.

• All discrete groups are locally compact.

• The the real line R, the complex plane C and its closed subset S1 are all locally compact.

• The general linear groups GL(n,R) and GL(n,C) are open subsets of their respective matrix
algebras and are hence locally compact.

• The finite dimensional orthogonal and the unitary groups O(n) and U(n) are closed subsets of
the general linear groups, and hence locally compact.

• Profinite groups are compact and hence they are locally compact.

Let us add some examples of non-locally compact groups.

• U(H) for an infinite dimensional Hilbert space H however is not locally compact. Indeed, iden-
tifying H ≅ `2(Z)⊗H, it suffices to check that the biliteral shift

U ∶ `2(Z)→ `2(Z) ∶ δn ↦ δn+1

is a unitary whose powers converge to 0 weakly.

• If X is an infinite set, then Sym(X) is not locally compact. A similar argument as for U(H), H
infinite dimensional, applies.

• Q ≤ R with the subspace topology is not a locally compact group. Indeed every neighbourhood
of 0 ∈ Q contains a sequence converging to an irrational number in R.

Exercise 4.0.3. We argued that if X is an infinite set, then Sym(X) is not a locally compact groups.
However, Sym(X) contains a large number of naturally defined locally compact group. If Γ is a graph
with edge set E(Γ), then Aut(Γ) ≤ Sym(E(Γ)) is closed and a subgroup. Prove that if Γ is locally
finite, then Aut(Γ) is locally compact.

14
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Hint. Recall that Γ is locally finite if for every vertex v ∈ V(Γ) the set of adjacent edges {e ∈ E(Γ) ∣
s(e) = v} is finite. Since the automorphism group of a disjoint union of graphs is the product of
the the automorphism groups of its connected components, we can restrict our considerations to the
case where V(Γ) is countable. Since Γ is locally finite this implies that E(Γ) is countable and hence
Sym(E(Γ)) is separable. It then suffices to check that the stabiliser Aut(Γ)v = {g ∈ Aut(Γ) ∣ gv = v}
is sequentially compact for some v ∈ V(Γ). Using the fact that Γ is locally finite, we can successively
find subsequences of (gn)n which are constant on balls of large radius around v . A diagonal sequence
argument then finishes the proof. ,

4.1 Uniform continuity

We will need frequently need the following strengthening of the notion of continuity for functions
on locally compact groups. Uniform continuity in the sense of the following definition generalises
the notion of uniform continuity with respect to some metric. The linking concept is the theory of
“uniformities”, which will not be explained any further here.

Definition 4.1.1. Let G be a locally compact group and f ∶ G → C a function.

• Then f is called left uniformly continuous, if for all ε > 0 there is an open neighbourhood U of
the identity in G such that for all x, y ∈ G satisfying x ∈ Uy we have ∣f (x) − f (y)∣ < ε.

• f is called right uniformly continuous, if for all ε > 0 there is an open neighbourhood U of the
identity in G such that for all x, y ∈ G satisfying y ∈ xU we have ∣f (x) − f (y)∣ < ε.

• f is called uniformly continuous, if it is left- and right uniformly continuous.

Lemma 4.1.2. Every continuous and compactly supported function on a locally compact group is
uniformly continuous.

Proof. Lemma 1.3.7 in Deitmar-Echterhoff.

4.2 The Haar measure

Recall 4.2.1. If X is a locally compact space, then an (outer) Radon measure on X is a locally finite
measure on the Borel σ-algebra Σ(X) of X which satisfies the following approximation properties.

• µ(A) = inf
U⊃A
U open

µ(U) for every measurable set A ∈ Σ(X)

• µ(U) = sup
K⊂U

K compact

µ(K) for every open subset set U ⊂ X

Note the subtlety that the second approximation property only holds for open subsets of X. In case X is
σ-compact (which will be most often the case in applications) this subtlety vanishes and approximation
from inside by compact subsets holds for arbitrary measurable sets. See Chapter 1.3 and Appendix
B.2 of [DE14] for more details on this problem.

Definition 4.2.2. Let G be a locally compact group and µ an outer Radon measure on G.

• µ is called left-invariant or a left Haar measure if µ(gA) = µ(A) holds for all measurable subsets
A ⊂ G and all g ∈ G.
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• µ is called right-invariant or a right Haar measure if µ(gA) = µ(A) holds for all measurable
subsets A ⊂ G and all g ∈ G.

In these notes we will mostly use left Haar measures and simply refer to them as Haar measures.

The following two theorems are of crucial importance for the theory of locally compact groups.

Theorem 4.2.3. Every locally compact group has a Haar measure.

Theorem 4.2.4. The Haar measure of a locally compact groups is unique up to a scalar multiple from
R>0.

We will not reproduce the proofs of Theorem 4.2.3 & 4.2.4 here, since they are very well explained in
Chapter 1.3 of [DE14].

We will freely use the correspondence between outer Radon measures on G and positive linear
functionals on Cc(G), provided by Riez representation theorem (see [Appendix B.2][DE14]). It allows
us to speak of Haar integrals I ∶ f ↦ ∫g f (x)dx where we integrate against a Haar measure. A Haar
integral satisfies the invariance property I( gf ) = I(f ) for all g ∈ G and all f ∈ Cc(G). Up to scalar
multiple a Haar integral is uniquely determined by this correspondence.

The uniqueness of the Haar measure allows us to quantify the difference between left and right
Haar measure. This is done by means of the next proposition.

Proposition 4.2.5. Let G be a locally compact group with a left Haar measure µ. For every g ∈ G
there is a scalar ∆(g) ∈ R>0 such that ∫G f (xy)dµ(x) = ∆(y) ∫G f (x)dµ(x) for all f ∈ L1(G). This
equality does not depend on the choice of the Haar measure. The map ∆ ∶ G → R>0 is a continuous
homomorphism.

Proof. The positive linear functional I ∶ f ↦ ∫G f (xg)dµ(x) is a Haar integral on Cc(G)for every g ∈ G.
Hence there is a scalar ∆(g) ∈ R>0, which satisfies I = ∆(g) ∫G dµ. Put differently, ∫G f (xy)dµ(x) =
∆(y) ∫G f (x)dµ(x) for all f ∈ Cc(G) and by approximation for all f ∈ L1(G). Since the Haar measure
is unique up to a scalar it follows that ∆(g) does not depend on its choice.

We show that ∆ ∶ G → R>0 is a group homomorphism. If x, y ∈ G and f ∈ Cc(G)+ satisfies
∫ f (z)dµ(z) = 1, then

∆(xy) = ∫
G

f (zxy)dµ(z) = ∆(y)∫
G

f (zx)dµ(z) = ∆(y)∆(x)

and

∆(x−1)∆(x) = ∫
G

f (zxx−1)dµ(z) = 1 .

Let us next show that ∆ ∶ G → R>0 is continuous. According to Proposition 1.3.4 is suffices to check
continuity at e ∈ G. Let ε > 0 and K a compact neighbourhood of e ∈ G. Let V ⊂ K be a symmetric
identity neighbourhood such that ∣f (zx)− f (z)∣ < ε

K supp f
for all x ∈ V and all z ∈ G. We used Lemma

4.1.2 saying that continuous compactly supported functions are uniformly continuous. We obtain that
for x ∈ V

∣∆(x) − 1∣ =
RRRRRRRRRRRRR
∫
G

f (zx) − f (z)dµ(z)
RRRRRRRRRRRRR
< ε

µ(K supp f )µ(V supp f ) ≤ ε .

This finishes the proof of the proposition.
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Definition 4.2.6. The homomorphism ∆ ∶ G → R>0 considered in Proposition 4.2.5 is called the
Modular function of G. A locally compact group is called unimodular, if its modular function is trivial.

Let us now relate left and right Haar measure via the modular function. Before, we record one
important approximation theorem.

Theorem 4.2.7. Let X be a locally compact space with regular Radon measure µ. Then Cc(X) ⊂
Lp(X,µ) is dense for every p ∈ [1,∞).

See Proposition 1.3.3 in [DE14] for a proof.

Proposition 4.2.8. Let G be a locally compact group with a fixed Haar measure. For every f ∈ L1(G),
we have

∫
G

f (x)dx = ∫
G

∆(x)f (x−1)dx ,

and for every f ∈ Cc(G) we have

∫
G

f (x−1)dx = ∫
G

∆(x)f (x)dx .

Proof. Consider the positive functional I(f ) = ∫G ∆(x)f (x−1)dx defined on compactly supported con-
tinuous functions on G. It satisfies

I( z f ) = ∫
G

∆(x)f (z−1x−1)dx

= ∫
G

∆(z)∆(xz−1)f (x−1)dx

= ∫
G

∆(x)f (x−1)dx

= I(f ) ,

for all z ∈ G. By uniqueness of the Haar integral (Theorem 4.2.4), it follows that I is a multiple of
the Haar integral. Let ε > 0 and choose a symmetric neighbourhood U of e such that ∣∆(x) − 1∣ < ε
for all x ∈ U. Let f ∈ Cc(G)+ be a function supported in V satisfying f (x−1) = f (x) for all x ∈ U and
∫G f (x)dx = 1. Then

∣I(f ) − ∫
G

f (x)dx ∣ = ∣∫
G

f (x)dx − ∫
G

∆(x)f (x−1)dx ∣

≤ ∫
G

∣1 −∆(x)∣f (x)dx

≤ ε∥f ∥1
= ε .

This shows that I equals the Haar integral. In particular, it extends to the L1(G) and it hence defines
the same functional on L1(G). The second equality follows since for every f ∈ Cc(G) the function
x ↦ f (x−1) is integrable.
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Exercise 4.2.9. Calculate the Haar measure and the modular function of R and of the ax + b-group
R⋊R>0. Observe that the modular function of R⋊R>0 does not restrict to the modular function of R.

Hint. The case R is classical, so let us consider the ax+b-group. We denote it by G. A short calculation
checks that the product of Lebesgue measures on the underlying space R × R>0 of G is a right Haar
measure. One deduces from Proposition 4.2.8 that he modular function of a locally compact group
can be equally well calculated by means of the right Haar measure. Indeed if µ denotes a left Haar
measure for G, then

∫
G

f (yx−1)dµ(x) = ∫
G

∆(x)f (yx)dµ(x) = ∫
G

∆(y−1x)f (x)dµ(x)

= 1

∆(y) ∫
G

∆(x)f (x)dµ(x) = 1

∆(y) ∫
G

f (x−1)dµ(x) .

Now a short calculation shows that ∆right(a,1) = 0 and ∆right(0, b) = b. Hence the modular function
of G is given by ∆(a, b) = 1/b. Using Proposition 4.2.8 again, we conclude that

1

b
d(λR × λR>0)(a, b)

is a left Haar measure for the ax + b-group. ,

Exercise 4.2.10. Let G be a locally compact group admitting a compact open subgroup. Show that
the modular function of G takes values in the positive rational numbers.

Hint. Let µ be a Haar measure of G and ∆ its modular function. Fix a compact open subgroup K ≤ G
and note that µ(K) <∞. Then ∆(g) = µ(K)

µ(Kg) . Express the latter term by products and quotients of
certain group indices. ,

Exercise 4.2.11. Let H ≤ G be an open subgroup of a locally compact group. Then µG ∣H is a Haar
measure for H.

Hint. Note that µG ∣H is non-zero and observe that left-invariance is inherited. ,

4.3 The regular representation

In this section we are going to define and study the most important representation of a locally compact
group. Let us start in the general setting of Lp-spaces.

Proposition 4.3.1. Let G be a locally compact group and p ∈ [1,∞).

(i) For all g ∈ G, the map Lg ∶ Cc(G) → Cc(G) defined by (Lgf )(x) = f (g−1x) extends to an
isometric operator on Lp(G).

(ii) For all g ∈ G, the map Rg ∶ Cc(G) → Cc(G) defined by (Rgf )(x) = f (xg) extends to the
∆(g)1/p-fold multiple of an isometric operator on Lp(G).

(iii) The maps G → GL(Lp(G)) ∶ g ↦ Lg and G → GL(Lp(G)) ∶ g ↦ Rg are group homomorphisms.

(iv) For all f ∈ Lp(G), the maps g ↦ Lgf and g ↦ Rgf are continuous from G into Lp(G).
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(v) The maps G → GL(Lp(G)) ∶ g ↦ Lg and G → GL(Lp(G)) ∶ g ↦ Rg are representations.

Proof. Statement (i) follows from left-invariance of the Haar measure. By Theorem 4.2.7, it suffices
to check that Lg is isometric on Cc(G). For all g ∈ G and f ∈ Cc(G), we have

∥Lgf ∥pp = ∫
G

∣f (g−1x)∣pdx = ∫
G

∣f (x)∣pdx = ∥f ∥pp .

We prove Statement (ii) in a similar way. For all g ∈ G and f ∈ Cc(G), we have

∥Rgf ∥pp = ∫
G

∣f (xg)∣pdx = ∆(g)∫
G

∣f (x)∣pdx = ∆(g)∥f ∥pp .

Let us prove Statement statement (iii). An elementary calculation shows that Lghf = LgLhf and
Rghf = RgRhf for all g, h ∈ G and all f ∈ Cc(G) (iii). Further, it is clear that Le = Re = idLp(G). By
continuity the statement follows.

Let us show statement (iv). Since R and L are group homomorphisms, it suffices to check their
continuity at the neutral element. We only treat the case of x ↦ Lgf , the other one being similar.
First take f ∈ Cc(G). Let ε > 0. We show that there is a neighbourhood of the identity U ⊂ G
such that ∥Lgf − f ∥p < ε for all g ∈ U. Fix a compact identity neighbourhood K ⊂ G. Since f
is uniformly continuous by Lemma 4.1.2, there is a symmetric identity neighbourhood U ⊂ K such
∣f (gx) − f (x)∣p < ε

µ(K supp f ) for all g ∈ U and all x ∈ G. We obtain for g ∈ U:

∥Lgf − f ∥pp = ∫
U supp f

∣f (g−1x) − f (x)∣pdx ≤ µ(U supp f ) ε

µ(K supp f ) ≤ ε .

This shows that g ↦ Lgf is continuous for f ∈ Cc(G).
Take an arbitrary f ∈ Lp(G) and let ε > 0. Find some f̃ ∈ Cc(G) such that ∥f − f̃ ∥p < ε/3. There

is some identity neighbourhood U ⊂ G such that ∥Lg f̃ − f̃ ∥ < ε/3 for all g ∈ U. This implies for g ∈ U

∥Lgf − f ∥ ≤ ∥Lgf − Lg f̃ ∥p + ∥Lg f̃ − f̃ ∥p + ∥f̃ − f ∥p < ε .

From the previous proposition, we single out the particular case of L2(G), which will be of main
interest for us in this section.

Definition 4.3.2. Let G be a locally compact group. The unitary representations λ, ρ ∶ G → U(L2(G))
defined by λg = Lg and ρg = ∆(g)− 12 Rg are called the left-regular representation and the right-regular
representation of G.

Let us observe that we actually defined just one single representation up to unitary conjugacy.

Proposition 4.3.3. Let G be a locally compact group. The left-regular representation and the right-
regular representation of G are unitary equivalent.

Proof. On compactly supported functions we define the operator W ∶ L2(G) → L2(G) by (Wf )(x) =
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f (x−1)∆(x)1/2. Then Proposition 4.2.8 implies that

∥Wf ∥22 = ∫
G

∣f (x−1)∆(x)1/2∣2dx

= ∫
G

∣f (x−1)∣2∆(x)dx

= ∫
G

∣f (x)∣2dx

= ∥f ∥22 .
So W extends to a unitary operator W ∶ L2(G)→ L2(G). For g ∈ G and f ∈ Cc(G) we have

W (λgf )(x) = λgf (x−1)∆(x)1/2

= f (g−1x−1)∆(x)1/2

= f ((xg)−1)∆(xg)1/2∆(g)−1/2

= (Wf )(xg)∆(g)−1/2

= ρg(Wf )(x) .
This shows that λ ≅ ρ.

We now proceed to highlight the merits of the regular representation. It provides a natural mean
to prove that every locally compact group has sufficiently many unitary representations.

Proposition 4.3.4. The left-regular representation of a locally compact group is injective. In partic-
ular, every locally compact group has sufficiently many representations.

Proof. Let G be a locally compact group and g ∈ G. Let U be an open neighbourhood of e such that
U and gU are disjoint. If f ∈ Cc(G)+ is any non-zero function whose support lies in U, then f and λgf
have disjoint support. It follows that

∥f − λgf ∥22 = ∫
G

∣f (x) − f (g−1x)∣2dx = ∫
G

∣f (x)∣2 + ∣f (g−1x)∣2dx = 2∥f ∥22 ≠ 0 .

In particular, λg ≠ idL2(G).

Proposition 4.3.5 (Fell’s absorption principle). Let G be a locally compact group. Denote by λ its
left regular representation and let π be any unitary representation of G. Then λ⊗ π is isomorphic to
dimπ copies of the left-regular representation: λ⊗ π ≅⊕dimπ λ.

Proof. Let H be the Hilbert space on which G is represented by π. We make use of the identification
L2(G)⊗H ≅ L2(G,H). Consider the map W ∶ L2(G,H) → L2(G,H) given by (Wf )(g) = π(g)f (g) on
functions f ∈ Cc(G,H). This map gives rise to a well-defined isometry, since

∥Wf ∥2 = ∫
G

∥Wf (g)∥2dµ(g)

= ∫
G

∥π(g)f (g)∥2dµ(g)

= ∫
G

∥f (g)∥2dµ(g)

= ∥f ∥2 ,
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for all f ∈ Cc(G,H). An inverse for W is given by (W −1f )(g) = π(g)−1f (g), showing that W is a
unitary. Further we have for f ∈ C(G,H) and g, h ∈ G

W (λg ⊗ id)(f )(h) = π(h)(λg ⊗ id)(f )(h) = π(h)f (g−1h)

and

(λg ⊗ π(g))Wf (h) = π(g)(Wf )(g−1h) = π(g)π(g−1h)f (g−1h) = π(h)f (g−1h) .

This shows that W (λg ⊗ id) = (λg ⊗ π(g))W , which implies that

λ⊗ π ≅ λ⊗ idH ≅ ⊕
dimπ

λ .

Remark 4.3.6. It would be interesting to find a characterisation of locally compact groups among
all topological groups based on Fell’s absorption property. Such a characterisation is not known to
me. The following statement does not hold true: a topological group with sufficiently many unitary
representations and a unitary representation satisfying Fell’s absorption principle is already locally
compact. A counterexample is the group Sym(N). Can we add natural conditions to the previous
ones in order to obtain a characterisation of locally compact groups?

Let us end this section with the observation that the left- and the right-regular representation can
be combined in an interesting way. It will mainly be of interest in Section 8 and more generally when
studying so called type I groups.

Proposition 4.3.7. Let G be a locally compact group. Then (g, h) ↦ λgρh defines a unitary repre-
sentation of G ×G on L2(G).

Proof. For g, h ∈ G and f ∈ Cc(G) we have

(λgρhf )(x) = (ρhf )(g−1x) = f (g−1xh)∆(h)−1/2 = (ρhλgf )(x) .

Hence the two unitary representations λ and ρ on L2(G) commute. The universal property of the
product construction now provides us with a well-defined continuous homomorphism λ × ρ ∶ G × G →
U(L2(G)).
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5 Bochner integrals

We only give the statement of existence and uniqueness of a Banach space valued integral, as we will
need it in the sequel. The reference [DE14, B.6 p.302ff] gives more details and an excellent exposition
on the matter.

Theorem 5.0.1. Let V be a Banach space and (X,µ) a measure space. If f ∶ X → V is a measurable
function such that x ↦ ∥f (x)∥ is an integrable function, then there is a unique element ∫X f dµ ∈ V
satisfying

ϕ(∫
X

f dµ) = ∫
X

ϕ ○ f dµ

for all functionals ϕ ∈ V ∗. Further, we have

∥∫
X

f (x)dµ(x)∥ ≤ ∫
X

∥f (x)∥dµ(x) .

We are mostly going to use Bochner integrals in the context of unitary representations. The
following lemma allows us to reduce some technicalities in Section 6.

Lemma 5.0.2. Let G be a locally compact group, (π,H) a unitary representation of G and f ∈ L1(G).
Define Tf = ∫G f (x)π(x)dx ∈ B(H). For all ξ ∈ H we have

Tf ξ = ∫
G

f (x)π(x)ξdx ∈ H .

Proof. Since ∥π(x)∥ = 1 and ∥π(x)ξ∥ = ∥ξ∥ for all x ∈ G and all ξ ∈ H, the functions x ↦ ∥π(x)∥ and
x ↦ ∥f (x)π(x)ξ∥ are integrable. So all expressions in the statement of the lemma are well-defined.

Let ξ ∈ H. For all η ∈ H, the map T ↦ ⟨Tξ, η⟩ is a linear functional on B(H). Theorem 5.0.1
hence implies that

⟨Tf ξ, η⟩ = ∫
G

f (x)⟨π(x)ξ, η⟩dx

= ∫
G

⟨f (x)π(x)ξ, η⟩dx

= ⟨∫
G

f (x)π(x)ξdx, η⟩ .

Since η ∈ H is arbitrary, this show that Tf ξ = ∫G f (x)π(x)ξdx as elements of H.
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6 Group algebras

The existence of a Haar measure on a locally compact group allows us to define a number of algebras.
Their definition is always based on the following convolution product.

Definition 6.0.1. Let f , g ∶ G → C be measurable functions on a locally compact group G.

• The convolution f ∗ g is defined by

(f ∗ g)(x) = ∫
G

f (y)g(y−1x)dy ,

whenever this integral makes sense.

• There is an involution f ↦ f ∗ defined by f ∗(x) = ∆(x)f (x−1).

We can now define the first algebra associated with a locally compact group G.

Theorem 6.0.2. Let G be a locally compact group. Then the vector space Cc(G) of continuous
compactly supported functions on G becomes a *-algebra with the convolution product and involution
as described in Definition 6.0.1

Proof. For f , g ∈ Cc(G), the function f ∗ g is well-defined, since (x, y)↦ f (y)g(y−1x) is a compactly
supported continuous function. Further f ∗g ∈ Cc(G), since the compactly supported continuous func-
tion (x, y)↦ f (y)g(y−1x) on the locally compact group G ×G is uniformly constant by Lemma 4.1.2.
There remain two non-trivial assertions of the theorem. First, the convolution product is associative.
Second, we have (f ∗g)∗ = g∗ ∗ f ∗ for all f , g ∈ Cc(G). We leave associativity as an exercise and show
that (f ∗ g)∗ = g∗ ∗ f ∗ for all f , g ∈ Cc(G). This is done by the following two calculations.

(f ∗ g)∗(x) = (f ∗ g)(x−1)∆(x) = ∆(x)∫
G

f (y)g(y−1x−1)dy

g∗ ∗ f ∗(x) = ∫
G

g∗(y)f ∗(y−1x)dy

= ∫
G

g(y−1)∆(y)f (x−1y)∆(y−1x)dy

= ∆(x)∫
G

g(y−1)f (x−1y)dy

= ∆(x)∫
G

g(y−1x−1)f (y)dy .

This shows the desired equality and finishes the proof of the theorem.

6.1 The Banach *-algebra L1(G)

Recognising that Cc(G) naturally forms a *-algebra for a locally compact group is an important step
to make use of functional analytic techniques. However, infinite dimensional algebras are very hard
to understand if they are not equipped with a suitable topology. We are hence going to present
completions of Cc(G) in various norms. We start with the familiar ∥ ∥1-norm.
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Definition 6.1.1. A Banach *-algebra A is a *-algebra with a Banach norm such that ∥ab∥ ≤ ∥a∥∥b∥
and ∥a∗∥ = ∥a∥ for all a, b ∈ A.

Theorem 6.1.2. Let G be a locally compact group.

(i) Let f , g ∈ L1(G). Then f ∗g is well-defined almost everywhere and it satisfies ∥f ∗g∥1 ≤ ∥f ∥1∥g∥1.

(ii) For f ∈ L1(G), we have ∥f ∗∥1 = ∥f ∥1.

(iii) The convolution and the involution turn L1(G) into a Banach *-algebra.

Proof. Let f , g ∈ Cc(G). The function G ×G ∋ (x, y)↦ f (y)g(y−1x) satisfies

∫
G

∫
G

∣f (y)g(y−1x)∣dxdy = ∫
G

∣f (y)g(x)∣dxdy = ∥f ∥1∥g∥1 <∞ .

The Fubini theorem hence tells us that the integral ∫G f (y)g(y−1x)dy is well-defined for almost every
x ∈ G. So f ∗ g is well-defined almost everywhere. Further,

∥f ∗ g∥1 = ∫
G

∣∫
G

f (y)g(y−1x)dy ∣dx

≤ ∫
G

∫
G

∣f (y)g(y−1x)∣dydx

= ∫
G

∫
G

∣f (y)g(y−1x)∣dxdy

= ∫
G

∫
G

∣f (y)∣∣g(x)∣dxdy

= ∥f ∥1∥g∥1 .

This shows that the convolution product of Cc(G) extends uniquely to a algebra product on L1(G).
So the the first statement of the theorem is proven.

For f ∈ L1(G), we have thanks to Proposition 4.2.8

∥f ∗∥1 = ∫
G

∣f (x−1)∆(x)∣dx = ∫
G

∣f (x)∣dx = ∥f ∥1 .

This shows the second statement of the theorem.
Since Cc(G) is an algebra, (i) shows that L1(G) is a Banach algebra with the convolution product.

Further, Cc(G) is a *-algebra, whose involution extends uniquely to L1(G) by (ii). This shows that
L1(G) is a Banach *-algebra.

Remark 6.1.3. Our definition f ∗(g) = ∆(g)f (g−1) together with the requirement ∥f ∗∥1 = ∥f ∥1 forces
∆ to be defined by ∫G f (xy)d(x) = ∆(y) ∫G f d(x), as we have done earlier.

For later use, we fix the following alternative way to write the convolution of two L1-functions

Lemma 6.1.4. Let G be a locally compact group and f , g ∈ L1(G). Then f ∗ g = ∫G f (x)Lxgdx .
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Proof. Identify the dual space of L1(G) with the essentially bounded functions L∞(G). Theorem 5.0.1
implies that for h ∈ L∞(G) and f , g ∈ L1(G) we have

⟨∫
G

f (x)Lxgdx, h⟩ = ∫
G

⟨f (x)Lxg, h⟩dx

= ∫
G

∫
G

f (x)Lxg(y)h(y)dydx

= ∫
G

∫
G

f (x)g(x−1y)h(y)dydx

= ∫
G

∫
G

f (x)g(x−1y)dxh(y)dy

= ∫
G

(f ∗ g)(y)h(y)dy

= ⟨f ∗ g, h⟩ .

This shows ∫G f (x)Lxgdx = f ∗ g.

6.2 Approximate identities and Dirac nets

In [DE14] the notion of Dirac nets of continuous functions is used to establish essential links between
a locally compact group G and its L1-algebra. We use a slightly more general concept here.

Definition 6.2.1. Let G be a locally compact group with fixed Haar measure µ. A Dirac function on
G is a non-negative element f ∈ L1(G) such that ∫ f dµ = 1. Given a neighbourhood basis U of the
identity e ∈ G, a Dirac net for U is a family of Dirac functions fU , U ∈ U such that supp f ⊂ U, where
supp f = ⋂{V c ∣ V ⊂ G open and f ∣V = 0 ∈ L1(G)} denotes the essential support of f .

Definition 6.2.2. Let G be a locally compact group and f ∈ L1(G) a Dirac function. Let (π,H) be
a unitary representation of G. Then the averaging operator associated with f in π is defined as the
Bochner integral

Tf = ∫
G

f (x)π(x)dx .

If U ⊂ G a measurable subset of non-zero finite Haar measure 0 ≠ µ(U) <∞ and f = 1
µ(U)1U , then we

also write Tf = TU .

Definition 6.2.3. Let A be a normed algebra. An approximate identity for A is a net of elements
(ai)i∈I such that aib → b and bai → b for all b ∈ A.

Lemma 6.2.4. Let (fU)U∈U be a Dirac net for a locally compact group G.

• (fU)U∈U is an approximate identity for L1(G).

• If (π,H) is a unitary representation of G and TfU , U ∈ U are the associated averaging operators,
we have TfU → id in the strong operator topology of B(H) as U ↓ {e}.
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Proof. We start by showing that (fU)U∈U is an approximate identity for L1(G). Let g ∈ Cc(G) and
ε > 0. Fix some compact identity neighbourhood K ⊂ G. Because g is uniformly continuous by Lemma
4.1.2, there is an identity neighbourhood V ⊂ K such that ∣g(x) − g(y−1x)∣ < ε/µ(K suppg) for all
y ∈ V and all x ∈ G. For every U ∈ U satisfying U ⊂ V , we obtain the following estimate.

∥fU ∗ g − g∥1 = ∫
G

RRRRRRRRRRRRR
(∫
G

fU(y)g(y−1x)dy) − g(x)
RRRRRRRRRRRRR

dx

= ∫
K suppg

RRRRRRRRRRRRR
∫
G

fU(y)(g(y−1x) − g(x))dy

RRRRRRRRRRRRR
dx

≤ ∫
K suppg

∫
G

fU(y)∣g(y−1x) − g(x)∣dydx

≤ µ(K suppg) ε

µ(K suppg)
= ε .

This shows that fU ∗ g → g for all g ∈ Cc(G) and hence for all g ∈ L1(G), because ∥fU∥1 = 1 for all
U ∈ U . Further, g ∗ fU = (f ∗U ∗ g∗)∗ → (g∗)∗ = g, since (f ∗U )U∈U is a Dirac net for the neighbourhood
basis {U−1 ∣ U ∈ U} of e ∈ G. This proves the first statement of the lemma.

We show the second statement of the lemma. Let ξ1, . . . , ξn ∈ H and let ε > 0. Since π ∶ G → U(H)
is strongly continuous, there is an identity neighbourhood V ⊂ G such that ∥π(x)ξi − ξi∥ < ε for all
x ∈ V and all i ∈ {1, . . . , n}. For η ∈ H and i ∈ {1, . . . , n} we calculate

∣⟨TfUξi − ξi , η⟩∣ = ∣∫
G

f (x)⟨π(x)ξi , η⟩dx − ⟨ξi , η⟩∣

= ∣∫
G

f (x)⟨π(x)ξi − ξi , η⟩dx ∣

≤ ∫
G

f (x)∣⟨π(x)ξi − ξi , η⟩∣dx

≤ ε∥η∥ .

This shows that ∥TfUξi − ξi∥ ≤ ε for all i ∈ {1, . . . , n}, which finishes the proof of the lemma.

6.3 Integration and desintegration of representations

In this section we are going to set up a 1-1 correspondence between unitary representations of a locally
compact group G and a certain class of contractive *-representations of L1(G). The correct class of *-
representations to be considered is indicated by Lemma 6.2.4, which showed a certain non-degeneracy
of the action of Dirac nets via unitary representations.

Definition 6.3.1. Let A be an algebra and a π ∶ A → B(V ) be a representation on a Banach space.
Then π is called non-degenerate, if the linear span of π(A)V is dense in V .

Relating the previous definition to Lemma 6.2.4, we note the following theorem in passing.

Theorem 6.3.2. Let A be a normed algebra with an approximate identity and let π ∶ A → B(V ) be a
representation of A on a Banach space V . Then the following statements are equivalent.
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• π is non-degenerate.

• π(ai)→ idV strongly for all bounded approximate identities (ai)i of A.

• π(ai)→ idV strongly for some bounded approximate identity (ai)i of A.

Proposition 6.3.3. Let (π,H) be a unitary representation of a locally compact group G. Then
f ↦ ∫G f (x)π(x)dx defines a non-degenerate contractive *-homomorphism L1(G)→ B(H).

Proof. Since ∥π(x)∥ = 1 for every x ∈ G, the function x ↦ f (x)π(x) is integrable for every f ∈ L1(G).
Further, ∥ ∫G f (x)π(x)dx∥ ≤ ∥f ∥1 follows from the general properties of the Bochner integral. So
f ↦ ∫G f (x)π(x)dx is well-defined contractive linear map from L1(G) to B(H), which we will denote
by π.

For all f , g ∈ L1(G) and ξ, η ∈ H, we have

⟨π(f ∗ g)ξ, η⟩ = ∫
G

⟨(f ∗ g)(x)π(x)ξ, η⟩dx

= ∫
G

(f ∗ g)(x)⟨π(x)ξ, η⟩dx

= ∫
G

∫
G

f (y)g(y−1x)dy⟨π(x)ξ, η⟩dx

= ∫
G

∫
G

f (y)g(y−1x)⟨π(x)ξ, η⟩dxdy

= ∫
G

∫
G

f (y)g(x)⟨π(y)π(x)ξ, η⟩dxdy

= ∫
G

∫
G

f (y)g(x)⟨π(x)ξ,π(y)∗η⟩dxdy

= ∫
G

f (y)⟨π(g)ξ,π(y)∗η⟩dy

= ∫
G

f (y)⟨π(y)π(g)ξ, η⟩dy

= ⟨π(f )π(g)ξ, η⟩ .

This shows that π(f ∗ g) = π(f )π(g). So π is a representation. Next, for f ∈ L1(G) and for ξ, η ∈ H
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we have

⟨π(f )ξ, η⟩ = ∫
G

f (x)⟨π(x)ξ, η⟩dx

= ∫
G

f (x)⟨ξ,π(x)∗η⟩dx

= ∫
G

f (x)⟨π(x−1)η, ξ⟩dx

= ∫
G

∆(x)f (x−1)⟨π(x)η, ξ⟩dx

= ∫
g

f ∗(x)⟨π(x)η, ξ⟩dx

= ⟨π(f ∗)η, ξ⟩
= ⟨ξ,π(f ∗)η⟩ .

This shows that π is a *-representation.
If (fU)U∈U is a Dirac net in G, the Lemma 6.2.4 says that π(fU) → idH strongly. It follows that

spanπ(L1(G))H ⊂ H is dense, meaning that π ∶ L1(G)→ B(H) is non-degenerate.

Definition 6.3.4. If (π,H) is a unitary representation of a locally compact group G, then the
*-representation π ∶ L1(G) → B(H) constructed in Proposition 6.3.3 is called the integrated rep-
resentation of (π,H).

The next proposition establishes the fact that there is a correspondence between unitary repre-
sentations of a locally compact group G and non-degenerate continuous *-representations of L1(G).

Proposition 6.3.5. Let G be a locally compact group and let π ∶ L1(G)→ B(H) be a non-degenerate
continuous *-representation on the bounded operators on a Hilbert space. Then there is unique unitary
representation of G, whose integrated representation is π.

Proof. By assumption the linear space spanned by π(L1(G))H is dense in H. For x ∈ G, we define an
operator π(x) on this space by

π(x)∑
i

π(fi)ξi ∶=∑
i

π(Lx fi)ξi .

We show that π(g) is well-defined and extends to a unitary operator on H. To this end note that for
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f , g ∈ Cc(G) and y ∈ G, we have

(g∗ ∗ Lx f )(y) = ∫
G

g∗(z)(Lx f )(z−1y)dz

= ∫
G

g(z−1)∆(z)f (x−1z−1y)dz

= ∫
G

g((zx−1)−1)∆(zx−1)f (x−1(zx−1)−1y)∆(x)dz

= ∫
G

g(xz−1)∆(z)f (z−1y)dz

= ∫
G

(Lx−1g)(z−1)∆(z)f (z−1y)dz

= ((Lx−1g)∗ ∗ f )(y) .

It follows that that g∗ ∗Lx f = (Lx−1g)∗ ∗ f for all f , g ∈ L1(G). Now take ∑i π(fi)ξi ∈ π(L1(G)H). We
obtain

∥∑
i

π(Lx fi)ξi∥2 =∑
i ,j

⟨π(Lx fi)ξi , π(Lx fj)ξj⟩

=∑
i ,j

⟨π(Lx fj)∗π(Lx fi)ξi , ξj⟩

=∑
i ,j

⟨π((Lx fj)∗ ∗ Lx fi)ξi , ξj⟩

=∑
i ,j

⟨π((Lx−1Lx fj)∗ ∗ fi)ξi , ξj⟩

=∑
i ,j

⟨π(f ∗j ∗ fi)ξi , ξj⟩

=∑
i ,j

⟨π(fi)ξi , π(fj)ξj⟩

= ∥∑
i

π(fi)ξi∥2 .

So π(x) is well-defined and extends to a unitary operator on H. We next show that x ↦ π(x) ∈
U(H) is continuous. It suffices to verify pointwise continuity on the linear span of π(L1(G))H. Let
f1, . . . , fn ∈ L1(G) and let ξ1, . . . , ξn ∈ H be unit vectors. Let ε > 0. By Proposition 4.3.1 (iv) there is
an identity neighbourhood U ⊂ G such that ∥Lx fi − fi∥1 < ε

n
for all i ∈ {1, . . . , n} and all x ∈ U. Hence

we obtain for x ∈ U

∥π(x)∑
i

π(fi)ξi −∑
i

π(fi)ξi∥1 ≤∑
i

∥π(Lx fi − fi)ξi∥1

≤∑
i

∥Lx fi − fi∥1

≤ n ε
n

= ε .

This shows continuity of π ∶ G → U(H), so that it is indeed a unitary representation.
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Denote by π̃ the integrated representation of π ∶ G → U(H). We show that π̃ = π as representations
of L1(G). It suffices to show that π̃(f )π(g)ξ = π(f )π(g)ξ for all f , g ∈ L1(G) and all ξ ∈ H. This
follows from the next calculation using Lemmas 5.0.2 and 6.1.4.

π̃(f )π(g)ξ = ∫
G

f (x)π(x)π(g)ξdx

= ∫
G

f (x)π(Lxg)ξd

= π(∫
G

f (x)Lxgdx)ξ

= π(f ∗ g)ξ .

We summarise the content of this section in the following theorem.

Theorem 6.3.6. Let G be a locally compact group. There is a one-to-one correspondence between
unitary representations of G and non-degenerate *-representations of L1(G), which assigns to a unitary
representation (π,H) its integrated form f ↦ ∫G f (x)π(x)dx .

6.4 Group C∗-algebras

We are next going to consider C∗-completions of L1(G). The reason is that C∗-algebras have a
much better general structure theory than general Banach-*-algebras. Let us recall the definition of
a C∗-algebra and one important characterisation.

Definition 6.4.1. A C∗-algebra is a Banach *-algebra A that satisfies the C∗-identity ∥x∗x∥ = ∥x∥2
for all x ∈ A.

Theorem 6.4.2. Let A be Banach *-algebra. Then A is a C∗-algebra if and only if it admits an
isometric *-representation into B(H) for some Hilbert space H.

The first C∗-completion that we introduce naturally arises from the regular representation of G.
Its definition is justified by the central role of the regular representation as well as the subsequent
proposition showing that we obtain an actually obtain a completion of L1(G).

Definition 6.4.3. Let G be a locally compact group and λ ∶ L1(G) → B(L2(G)) the integrated form

of the left-regular representation. Then C∗
red(G) = λ(L1(G))∥⋅∥ is the reduced group C∗-algebra of G.

Proposition 6.4.4. The *-homomorphism λ ∶ L1(G)→ C∗
red(G) is injective.

Proof. First observe that by the definition of convolution and integrated representations, we have the
identity λ(f )g = f ∗ g ∈ L1(G) ∩ L2(G) for all f ∈ L1(G) and g ∈ L2(G) ∩ L1(G). Take f ∈ L1(G) such
that λ(f ) = 0. If (fU)U∈U is a Dirac net in L1(G) ∩ L2(G), then

0 = λ(f )fU = f ∗ fU
∥ ∥1Ð→ f ,

By Lemma 6.2.4. This shows that f = 0.

The second C∗-completion of L1(G) that we introduce is the maximal group C∗-algebra. It captures
the unitary representation theory of G in the same fashion as L1(G) does according to Theorem 6.3.6.
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Definition 6.4.5. Let G be a locally compact group. For f ∈ L1(G) define the universal C∗-norm by
∥f ∥C∗max = sup{∥π(f )∥ ∣π unitary representation of G}. The completion of L1(G) with respect to this
norm is called the universal C∗-algebra of G and it is denoted by C∗

max(G).

Theorem 6.4.6. Let G be a locally compact group. There is a one-to-one correspondence between
unitary representations of G and non-degenerate *-representations of C∗

max(G).

Proof. In view of Theorem 6.3.6 it suffices to argue that there is a one-to-one correspondence between
representations of L1(G) and C∗

max(G). This follows from the fact that for every non-degenerate
*-representation π ∶ L1(G) → B(H), we have ∥π(f )∥ ≤ ∥f ∥C∗max , so that π uniquely extends to a
non-degenerate *-representation of C∗

max(G). Vice versa, every non-degenerate *-representation of
C∗
max(G) restricts to a non-degenerate *-representation of its dense subalgebra L1(G).

Remark 6.4.7. Since the C∗-norm on L1(G) ⊂ C∗
max(G) dominates the norm of L1(G) ⊂ C∗

red(G), the
inclusion λ ∶ L1(G)↪ C∗

red(G) extends to a natural surjective *-homomorphism λ ∶ C∗
max(G)→ C∗

red(G).

6.5 Group von Neumann algebras

In this section we complete the reduced group C∗-algebra to the group von Neumann algebra. The
advantage of this step is a gain of flexibility in the bigger von Neumann algebra.

Definition 6.5.1. A von Neumann algebra is a unital strongly closed *-subalgebra M ⊂ B(H) for some
Hilbert space H.

Theorem 6.5.2. Let H be a Hilbert space and A ⊂ B(H) a unital *-subalgebra. Then the following
statements are equivalent.

• A = A′′.

• A is strongly closed.

• A is weakly closed.

Remark 6.5.3. • There is a completely intrinsic characterisation of a von Neumann algebra, not
referring to a concrete Hilbert space representation. A C∗-algebra M is a von Neumann algebra
if and only if it admits an isometric predual as a Banach space. This is known as Sakai’s theorem.

• The theory of von Neumann algebras is sometimes considered noncommutative measure theory.
Indeed, abelian von Neumann algebras are of the form L∞(X) for a standard measure space X.
This perspective gives a foundation to the claim that von Neumann algebras are more flexible
than C∗-algebras, which are of topological nature. This can be illustrated by the fact that if
x ∈ M is an operator in a von Neumann algebra and x = v ∣x ∣ is its polar decomposition, then
v , ∣x ∣ ∈ M. In a C∗-algebraic setting, the partial isometry v does not necessarily remain in the
algebra.

The following definition and the subsequent theorem demonstrate the flexibility of the von Neu-
mann algebraic setting.

Definition 6.5.4. Let G be a locally compact group. The group von Neumann algebra of G is defined
as L(G) = π(G)′′.

Theorem 6.5.5. Let G be a locally compact group. Then L(G) = C∗
red(G)SOT.
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6.6 Some properties of group algebras

In this section, we briefly mention two properties of a group that can be characterised by their group
algebras.

Theorem 6.6.1. Let G be a locally compact group. Then the following statements are equivalent.

(i) G is discrete.

(ii) Cc(G) is unital.

(iii) L1(G) is unital.

(iv) C∗
red(G) is unital.

(v) C∗
max(G) is unital.

Remark 6.6.2. There is no characterisation of discrete groups in terms of their group von Neumann
algebras possible. In fact, we will see that L(Z) ≅ L∞(S1) and L(R) ≅ L∞(R) in Section 9.6.3. These
von Neumann algebras are isomorphic, since S1∖{1} is homeomorphic with R and {1} ⊂ S1 is a subset
of Lebesgue measure 0.

Theorem 6.6.3. Let G be a locally compact group. Then the following statements are equivalent.

(i) G is abelian.

(ii) Cc(G) is abelian.

(iii) L1(G) is abelian.

(iv) C∗
red(G) is abelian.

(v) C∗
max(G) is abelian.

(vi) L(G) is abelian.
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7 Compact operators, Hilbert-Schmidt operators and trace class oper-
ators

In this section we develop the necessary theory of compact operators and Hilbert-Schmidt operators
as they will be used in the representation theory of compact groups.

7.1 Compact operators and the spectral theorem

Definition 7.1.1. Let H be a Hilbert space. An operator T ∈ B(H) is called compact, if TB ⊂ H is
relatively compact for every bounded set B ⊂ H. The set of all compact operators in B(H) is denoted
by K(H).

The spectral theorem for compact operators draws a strong parallel between compact operators and
operators on finite dimensional Hilbert spaces. It is the content of a functional analysis course. We
cite the formulation stated in [Con90, Theorem 7.9]. Recall that an operator T ∈ B(H) is called
normal if T ∗T = TT ∗.

Theorem 7.1.2. Every compact normal operator is diagonalisable. That is, if T ∈ K(H) is a compact
normal operator on a Hilbert space, then the spectrum of σ(T ) is countable, every element of σ(T )
is an eigenvalue of T and H = kerT ⊕⊕λ∈σ(T )∖{0} Eig(T,λ), where Eig(T,λ) = {ξ ∈ H ∣Tξ = λξ} is
the finite dimensional eigenspace. The so called spectral projections Eλ, λ ∈ σ(T ) onto the subspace
Eig(T,λ) ≤ H lie in the C∗-algebra generated by T . The projection E0 onto the kernel of T lies in the
von Neumann algebra generated by T .

We will need the following characterisation of compact operators later on.

Proposition 7.1.3. Let H be a Hilbert space. For T ∈ B(H) the following conditions are equivalent.

• T is compact

• For every orthonormal basis (ei)i∈I of H we have ∥Tei∥→ 0.

• There are finite rank projections (Pn)n∈N such that ∥T − TPn∥→ 0.

Proof. Assume that T is compact and let (ei)i∈I be an orthonormal basis of H. Then {Tei ∣ i ∈ I} ⊂ H
is precompact. Hence, in order to show ∥Tei∥→ 0, it suffices to show that every convergent sequence
in {Tei ∣ i ∈ I} converges to 0. Let (ik)k∈N be some sequence in I such that Teik → ξ ∈ H as k →∞.
Then

∥ξ∥2 = lim
k

⟨Teik , ξ⟩ = lim
k

⟨eik , T
∗ξ⟩→ 0 .

So ∥ξ∥ = 0 showing what we had to show.
Now assume that there is no sequence of finite rank projections (Pn)n∈N such that ∥T −TPn∥→ 0.

We will show that there is some orthonormal basis (ei)i∈I such that ∥Tei∥ /→ 0. The assumption
reformulates to the following statement. There is some δ > 0 such that for all finite rank projections
P ∈ B(H) we have ∥T − TP ∥ > δ. We construct inductively an orthonormal sequence (en)n∈N such
that ∥Ten∥ ≥ δ. Sine ∥T ∥ = ∥T − T0∥ > δ, there is a unit vector e0 such that ∥Te0∥ ≥ δ. If e0, . . . , en
have been constructed, let K = span{e0, . . . , en} and let P ∶ H → K be the finite rank projection onto
K. Then ∥T (1 − P )∥ = ∥T − TP ∥ > δ implies the existence of a unit vector en+1 ∈ K⊥ such that
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∥Ten+1∥ ≥ δ. We obtain the sequence (en)n∈N as claimed above. Completing it to an orthonormal
basis (ei)i∈I of H (with N ⊂ I), we find that Tei /→ 0.

If there are finite rank projections (Pn)n∈N such that ∥T − TPn∥→ 0, then T ∈ FR(H) is a limit of
compact operators and hence it is compact itself. This finishes the proof of the proposition.

It is easy to see that K(H) ⊂ B(H) is a norm-closed ideal. In fact, it is the only norm-closed ideal
in B(H). The following proposition can be proved using measurable functional calculus and the polar
decomposition of operators.

Proposition 7.1.4. Let H be a Hilbert space. Then 0, K(H) and B(H) are the only norm closed
ideals of B(H).

Corollary 7.1.5. Every non-trivial ideal I ⊂ B(H) is a dense subset of the compact operators K(H).

Proof. Let I � B(H) be some non-trivial idea. Then I ⊂ B(H) is a closed ideal and hence equals one
of the three possibilities 0, K(H) or B(H) described by Proposition 7.1.4. If I = 0, then I = 0. Also if
I = B(H), then there is an element T ∈ I such that ∥T − idH∥ < 1. Using the von Neumann series, this
shows that T is invertible in B(H) and hence I = B(H). Since I is non-trivial, it hence follows that
I = K(H), which proves the corollary.

Besides the compact operators there are plenty of non-closed ideals in B(H). The first examples,
that we already know are the operators of finite rank. We are going to consider two more non-closed
ideals in B(H), the trace class operators and the Hilbert-Schmidt operators in Section 7.3.

7.2 The trace on B(H)

In this case we obtain the definition of a trace for operators on an infinite dimensional Hilbert space.

Lemma 7.2.1. Let H be a Hilbert space, (ei)i∈I and (fj)j∈J orthonormal bases of H and T ∈ B(H)+ a
positive operator. Then

∑
i∈I

⟨Tei , ei⟩ =∑
j∈J

⟨T fj , fj⟩ .

Proof. Note that for every i ∈ I and j ∈ J the term ⟨T 1/2ei , fj⟩⟨fj , T 1/2ei⟩ = ∣⟨T 1/2ei , fj⟩∣2 is positive.
So we may change the order of summation in the following calculation.

∑
i∈I

⟨Tei , ei⟩ =∑
i∈I

⟨T 1/2ei , T 1/2ei⟩

= ∑
i∈I,j∈J

⟨T 1/2ei , fj⟩⟨fj , T 1/2ei⟩

= ∑
i∈I,j∈J

⟨ei , T 1/2fj⟩⟨T 1/2fj , ei⟩

=∑
j∈J

⟨T 1/2fj , T 1/2fj⟩

=∑
j∈J

⟨T fj , fj⟩ .

This proves the lemma.
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Thanks to the previous lemma, the next definition is independent of the choice of a basis in a
Hilbert space.

Definition 7.2.2. Let H be a Hilbert space. Then Tr ∶ B(H)+ → [0,∞] defined by

Tr(T ) =∑
i∈I

⟨Tei , ei⟩

for a some orthonormal basis (ei)i∈I is called the trace on B(H).

The trace on a Hilbert space is a natural analogue of the usual trace on a matrix algebra Mn(C).
Indeed, it is easy to observe that if H is a finite dimensional Hilbert space, then Tr is the restriction
of the usual trace to the set of positive operators.

The next proposition collects some basic properties of the trace.

Proposition 7.2.3. Let H be a Hilbert space and Tr ∶ B(H)+ → [0,∞] the trace on B(H).

• Tr is additive, that is Tr(T + S) = Tr(T ) +Tr(S) for all T,S ∈ B(H)+.

• Tr is positive homogeneous, that is Tr(cT ) = cTr(T ) for all T ∈ B(H)+ and all c ∈ [0,∞).

• Tr is finite on finite rank operators, that is Tr(T ) <∞ if T ∈ FR(H)+.

• Tr is tracial in the following senses.

– If T ∈ B(H)+ and U ∈ U(H), then Tr(U∗TU) = Tr(T ).
– If T ∈ B(H), then Tr(T ∗T ) = Tr(TT ∗).
– Tr satisfies Tr(∣T ∣) = Tr(∣T ∗∣) for all T ∈ B(H).

• Tr is faithful, that is Tr(T ∗T ) = 0 implies T = 0 for all T ∈ B(H).

Proof. In order to prove that Tr is additive and positive homogeneous take T,S ∈ B(H)+ and c ∈ [0,∞)
and let (ei)i∈I be an orthonormal basis of H. Then

Tr(T+cS) =∑
i∈I

⟨T+cSei , ei⟩ =∑
i∈I

⟨Tei , ei⟩+c⟨Sei , ei⟩ = (∑
i∈I

⟨Tei , ei⟩)+c(∑
i∈I

⟨Sei , ei⟩) = Tr(T )+cTr(S) .

Next, let T ∈ FR(H) be a finite rank operator. Let (ei)i∈I be an orthonormal basis of H such that
Tei = 0 for all but finitely many ei . Then Tr(T ) = ∑i∈I⟨Tei , ei⟩ is a finite sum of positive real numbers.
So Tr(T ) ∈ [0,∞) is finite.

Let T ∈ B(H)+ and U ∈ U(H). Fix some orthonormal basis (ei)i∈I of H and note that (Uei)i∈I is
an orthonormal basis of H too. Then

Tr(U∗TU) =∑
i∈I

⟨U∗TUei , ei⟩ =∑
i∈I

⟨TUei , Uei⟩ = Tr(T )

follows from the independence of Tr of the choice of an orthonormal basis.
Let T ∈ B(H) and write T = V ∣T ∣ for its polar decomposition. Then TT ∗ = V ∣T ∣2V ∗ = V T ∗TV ∗

and hence also V ∗TT ∗V = T ∗T . Fix an orthonormal basis (ei)i∈I0 of the support of T and complete it
to an orthonormal basis (ei)i∈I of H, with I0 ⊂ I. Set fi ∶= V ei for i ∈ I0 and complete the orthonormal
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set (fi)i∈I0 to some orthonormal basis (fj)j∈J of H with I0 ⊂ J. Since T ∗fj = T ∗V V ∗fj = 0 for j ∈ J ∖ I0,
and since Tr is independent of the choice of an orthonormal basis, we obtain

Tr(TT ∗) =∑
j∈J

⟨TT ∗fj , fj⟩

=∑
i∈I0

⟨TT ∗fi , fi⟩

=∑
i∈I0

⟨TT ∗V ei , V ei⟩

=∑
i∈I0

⟨V ∗TT ∗V ei , ei⟩

=∑
i∈I0

⟨T ∗Tei , ei⟩

=∑
i∈I

⟨T ∗Tei , ei⟩

= Tr(T ∗T ) .

Let T ∈ B(H) with polar decomposition T = V ∣T ∣. Put X = V ∣T ∣1/2. Then X∗X =
∣T ∣1/2V ∗V ∣T ∣1/2 = ∣T ∣, since V is an isometry. We show that XX∗ = ∣T ∗∣, after which the equality
Tr(∣T ∣) = Tr(∣T ∗∣) follows from traciality of Tr. Since V is an isometry, we obtain a *-homomorphism
AdV ∶ C∗(T ∗T ) → C∗(TT ∗). Since *-homomorphisms are compatible with functional calculus, it
follows that

XX∗ = V ∣T ∣V ∗ = V (T ∗T )1/2V ∗ = (V T ∗TV ∗)1/2 = (TT ∗)1/2 = ∣T ∗∣ .

This shows that Tr is tracial.
Let T ∈ B(H) and assume that Tr(T ∗T ) = 0. Denote by (ei)i∈I some orthonormal basis of H. Then

0 = Tr(T ∗T )∑i∈I = ⟨T ∗Tei , ei⟩ = ∑i∈I ∥Tei∥2 implies that Tei = 0 for all i ∈ I. Since span{ei ∣ i ∈ I} is
dense in H, it follows that T = 0. This finishes the proof of the proposition.

7.3 Trace class and Hilbert-Schmidt operators

We are now going to define the ideal of trace class operators and of Hilbert-Schmidt operators on a
Hilbert space.

Definition 7.3.1. Let H be a Hilbert space and let T ∈ B(H).

• We call ∥T ∥1 = Tr(∣T ∣) the trace class norm of T . Then T is a trace class operator if ∥T ∥1 <∞.

• We call ∥T ∥HS = Tr(T ∗T ) the Hilbert-Schmidt norm of T . Then T is a Hilbert-Schmidt operator
if ∥T ∥HS <∞.

We denote the set of trace class operators on H by T (H) and the set of Hilbert-Schmidt operators
by HS(H).

One important source of Hilbert-Schmidt operators are so called integral kernel operators. We
now state a key theorem for our treatment of the representation theory of compact groups (Section
8)
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Theorem 7.3.2. Let X be a locally compact space and µ be a Radon measure space on X. If
k ∶ X ×X → C is an L2-kernel, then the integral operator K ∶ L2(X,µ) → L2(X,µ) associated with k
and satisfying Kf (x) = ∫X k(x, y)f (y)dµ(y) is well-defined and a Hilbert-Schmidt operator satisfying
∥K∥HS = ∥k∥2.

A proof can be found in [DE14, Proposition 5.3.3.].
We first observe that T (H) and HS(H) are closed under conjugation.

Lemma 7.3.3. For all T ∈ B(H) we have ∥T ∗∥1 = ∥T ∥1 and ∥T ∗∥HS = ∥T ∥HS .

Proof. We use the properties of Tr proven in Proposition 7.2.3, to obtain

∥T ∗∥2HS = Tr(TT ∗) = Tr(T ∗T ) = ∥T ∥2HS
and

∥T ∗∥1 = Tr(∣T ∗∣) = Tr(∣T ∣) = ∥T ∥1 .

In order to prove that trace-class operators and Hilbert-Schmidt operators are ideals of B(H), we
need the following result.

Lemma 7.3.4. Let T,S ∈ B(H)+ such that T ≤ S. Then T 1/2 ≤ S1/2.

For a proof consult [Mur90, Theorem 2.2.6].

Proposition 7.3.5. Let A,B,T ∈ B(H). Then
• ∥ATB∥HS ≤ ∥A∥∥B∥∥T ∥HS .

• ∥ATB∥1 ≤ ∥A∥∥B∥∥T ∥1 and

Proof. Let A,B,T ∈ B(H). We have

(AT )∗AT = T ∗A∗AT ≤ ∥A∗A∥T ∗T = ∥A∥2T ∗T .

This shows that

∥AT ∥2HS = Tr((AT )∗AT ) ≤ Tr(∥A∥2T ∗T ) = ∥A∥2∥T ∥2HS .

By Lemma 7.3.3, we obtain that

∥ATB∥HS ≤ ∥A∥∥TB∥HS = ∥A∥∥B∗T ∗∥HS ≤ ∥A∥∥B∗∥∥T ∗∥HS = ∥A∥∥B∥∥T ∥ .

In order to obtain similar estimates for the trace-class norm, we apply Lemma 7.3.4 to see that

∣AT ∣ = ((AT )∗AT )1/2 ≤ (∥A∥2T ∗T )1/2 = ∥A∥∣T ∣ .

Then also

∥AT ∥1 = Tr(∣AT ∣) ≤ Tr(∥A∥∣T ∣) = ∥A∥∥T ∥1 .

As before, we obtain

∥ATB∥1 ≤ ∥A∥∥B∥∥T ∥1
follows. This finishes the proof of the proposition.
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Proposition 7.3.6. T (H) ⊂HS(H) ⊂ K(H) are ideals in B(H).

Proof. From Proposition 7.3.5 it is clear that T (H) and HS(H) are ideals in B(H). We only have
to show the inclusions T (H) ⊂HS(H) ⊂ K(H). Note that all these sets are spanned by their positive
elements. If T ∈ T (H)+, then ∥T 1/2∥HS = ∥(T 1/2)2∥1 = ∥T ∥1 < ∞ shows that T 1/2 ∈ HS(H). Since
HS(H) is an ideal, it follows that T = (T 1/2)2 ∈HS(H). This shows T (H) ⊂HS(H).

Let now T ∈HS(H)+ and let (ei)i∈I be some orthonormal basis of H. Then ∞ > ∑i∈I⟨T ∗Tei , ei⟩ =
∑i∈I ∥Tei∥2 shows that ∥Tei∥→ 0. So T is compact by Proposition 7.1.3. This shows HS(H) ⊂ K(H)
and finishes the proof of the proposition.

7.4 Hilbert-Schmidt operators as a Hilbert space

In this section take another point of view on the Hilbert-Schmidt operators on a Hilbert space H. Not
only do they naturally carry the structure of a Hilbert space themselves, but also are they a natural
B(H)-bimodule.

Proposition 7.4.1. Let H be a Hilbert space.

• The Hilbert-Schmidt norm on HS(H) is induced by the inner product ⟨T,S⟩ ∶= Tr(S∗T )

• HS(H) is complete and hence a Hilbert space.

Proof. It is easy to check that ⟨T,S⟩ = Tr(S∗T ) defines an inner product on HS(H) inducing the
Hilbert-Schmidt norm. If 0 = ∥T ∥2HS = Tr(T ∗T ), then T = 0 by faithfulness of Tr (Proposition 7.2.3).
We show that HS(H) is complete. Let (Tn)n∈N be a Cauchy sequence in HS(H). Then (∥Tnξ∥)n∈N
is a Cauchy sequence for every ξ ∈ H. We define Tξ ∶= limTnξ. Clearly T is everywhere defined on H
and linear. Since for every unit vector ξ ∈ H, we have the estimate

∥Tξ∥2 = lim
n

∥Tnξ∥2 ≤ lim
n

∥Tn∥HS ,

we see that T is a bounded linear operator on H. Fix an orthonormal basis (ei)i∈I of H. We may apply
the Lemma of Fatou and see that T is a Hilbert-Schmidt operator:

∥T ∥2HS =∑
i∈I

∥Tei∥2 =∑
i∈I

lim
n∈N

∥Tnei∥2 ≤ lim inf
n∈N

∑
i∈I

∥Tnei∥2 = lim inf
n∈N

∥Tn∥HS .

Let ε > 0. Since (Tn)n∈N is a Cauchy sequence in the Hilbert-Schmidt norm, there is some finite
subset F ⊂ I and some n0 ∈ N such that ∑i∈I∖F ∥Tnei∥2 < ε for all n ≥ n0. Enlarging F , we may further
assume that ∑i∈I∖F ∥Tei∥2 < ε, since T is a Hilbert-Schmidt operator. Making n0 bigger, we may also
assume that ∥(T − Tn)ei∥2 < ε/∣F ∣ for all i ∈ F . We obtain that for n ≥ n0

∥T − Tn∥2HS =∑
i∈I

∥(T − Tn)ei∥2 <∑
i∈F

∥T − Tn)ei∥2 + 2ε < 3ε .

This shows that Tn → T in Hilbert-Schmidt norm, so that HS(H) is complete. It follows that HS(H)
is a Hilbert space.

The next proposition is part of the motivation to introduce Hilbert-Schmidt operators. They
provide us with the possibility to obtain a natural bimodule for the bounded operators on a Hilbert
space. Let us first fix some notation.
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Notation 7.4.2. Let H be a Hilbert space and ξ, η ∈ H. The rank one operator H ∋ ζ ↦ ⟨ζ, η⟩ξ is
denoted by eξ,η. We admit the relations e∗ξ,η = eη,ξ and Tr(eξ,η) = ⟨ξ, η⟩, which follow from short
calculations.

Proposition 7.4.3. Let H be a Hilbert space.

• H ⊗H →HS(H) ∶ ξ ⊗ η ↦ eξ,η is a well-defined isomorphism of Hilbert spaces.

• B(H) acts by bounded operators on the left and on the right of HS(H).

• The isomorphism H ⊗ H ≅ HS intertwines the B(H) ⊗alg B(H)opp action on HS(H) with the
action A(ξ ⊗ η)Bopp = Aξ ⊗B∗η.

Proof. We first have to show that the assignment H ⊗H → HS(H) ∶ ξ ⊗ η ↦ eξ,η is well-defined and
isometric. The operator ∑ni=1 eξi ,ηi is assigned to ∑ni=1 ξi ⊗ ηi ∈ H ⊗alg H. We have

∥
n

∑
i=1
eξi ,ηi ∥

2
HS = Tr((

n

∑
i=1
eξi ,ηi )

∗(
n

∑
j=1
eξj ,ηj ))

=
n

∑
i ,j=1

Tr(eηi ,ξi eξj ,ηj )

=
n

∑
i ,j=1

⟨ξi , ξj⟩Tr(eηi ,ηj )

=
n

∑
i ,j=1

⟨ξi , ξj⟩⟨ηi , ηj⟩

= ∥
n

∑
i=1
ξi ⊗ ηi∥2H⊗H

We obtain an isometric linear map H ⊗H → HS(H) whose image contains all finite rank operators.
So it establishes an isomorphism H ⊗H ≅HS(H).

The fact that B(H) acts by bounded operators on left and on the right of HS follows from 7.3.5.
Now let A,B ∈ B(H) and ξ, η ∈ H. Then

(A⊗Bop)(ξ ⊗ η) = Aξ ⊗B∗η ↦ eAξ,B∗η = Aeξ,ηB ,

which shows that the isomorphism described above indeed intertwines the B(H) ⊗alg B(H)op action
on HS(H) and H ⊗H.

We fix the most interesting consequence for us of the previous identification.

Proposition 7.4.4. Let G be a locally compact group and (π,H) a unitary representation of G. Then
(Adπ)(g, h)T = π(h)Tπ(g)∗ defines a representation of G × G on the Hilbert-Schmidt operators
HS(H).

Proof. It is clear that the map Adπ ∶ G × G → GL(HS(H)) is well-defined. For T ∈ HS(H) and
g, h ∈ G we have

∥π(h)Tπ(g−1)∥2HS = Tr((π(h)Tπ(g−1))∗π(h)Tπ(g−1)) = Tr(T ∗T ) = ∥T ∥2HS .
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So Adπ ∶ G×G → U(HS(H)). We have to check that it is continuous. Since finite rank operators are
dense in HS(H) with respect to the Hilbert-Schmidt norm, it suffices to check continuity on these.
Proposition 7.4.3 tells us that there is an isomorphism ϕ ∶ HS(H) ≅ H ⊗H satisfying eξ,η = ξ ⊗ η for
all ξ, η ∈ H. In particular, ϕ identifies the subspace of finite rank operators with the algebraic tensor
product H ⊗alg H. Further,

ϕ((Adπ)(g, h)(eξ,η)) = ϕ(eπ(g)ξ,π(h)η) = π(g)ξ ⊗ π(h)η ,

showing that Adπ is indeed pointwise continuous on finite rank operators.
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8 Compact groups: Peter-Weyl Theory and characters

In this section we will investigate different aspects of the unitary representation theory of compact
groups. Let us start by some facts on their Haar measure.

Proposition 8.0.1. Let K be a compact group. Then the Haar measure on K is finite and the modular
function of K is trivial, that is ∆K ≡ 1.

Proof. Assuming that G is compact, we take an open subset U ⊂ G of finite Haar measure, which
exists thanks to the assumption of local finiteness on Haar measures. Since G is compact, there are
finitely many elements g1, . . . , gn ∈ G such that G = ⋃ni=1 giU. So µ(G) ≤ ∑ni=1 µ(giU) = nµ(U) < ∞,
where µ is the Haar measure of G. This shows that µ is finite.

Let µ be the left Haar probability measure of K. Since 1K(xy) = 1 for all x, y ∈ K, we obtain for
x ∈ K

∆(x) = ∆(x)∫
K

1K(y)dy = ∫
K

1K(yx)dy = 1 .

We then conclude ∆(x) = 1.

From now on we will normalise the Haar measure on a compact group to be a probability measure.
Although not right away necessary, it is advantageous to take note of the following proposition,

which expresses the fact that unitary representation theory of a compact group covers actually a wider
range of representations than expected naively.

Proposition 8.0.2. Let K be a compact group and let π ∶ K → GL(H) be a not necessarily unitary
representation on a Hilbert space V . Then π is unitarisable.

Proof. Let (⋅, ⋅) be the scalar product of H. We define a function on H × H by ⟨ξ, η⟩ ∶=
∫K(π(x)ξ,π(x)η)dx and claim that ⟨⋅, ⋅⟩ is a K-invariant scalar product, which induces the topol-
ogy of H. This will show that K is unitarisable.

From linearity of the integral it follows that ⟨⋅, ⋅⟩ is a sesquilinear form on H. Since the integral of a
non-negative real valued function is non-negative, it follows that ⟨⋅, ⋅⟩ is positive semi-definite. Further,
the map K ∋ x ↦ (π(x)ξ,π(x)ξ) is continuous for every ξ in H, because π is pointwise continuous.
So if ⟨ξ, ξ⟩ = 0, then (π(x)ξ,π(x)ξ) = 0 for all x ∈ K. It follows that ξ = 0. We showed that ⟨⋅, ⋅⟩ is a
scalar product on H.

For x ∈ K, ξ, η ∈ H, right invariance of the Haar measure shows that

⟨π(x)ξ,π(x)η⟩ = ∫
G

(π(y)π(x)ξ,π(y)π(x)η)dy = ∫
G

(π(y)ξ,π(y)η)dy = ⟨ξ, η⟩ .

So ⟨⋅, ⋅⟩ is K-invariant.
Since K → GL(H) is a representation, the function x ↦ ∥π(x)∥ is locally bounded and hence

bounded, because K is compact. So there is C > 0 such that ∥π(x)∥ ≤ C for all x ∈ K. Then
∥π(x)∥ = ∥π(x−1)−1∥ ≥ 1/C follows for all x ∈ K. Thus ∥π(K)∥ ⊂ [1/C,C]. It follows that for ξ ∈ H

∥ξ∥2⟨⋅,⋅⟩ = ∫
G

(π(x)ξ,π(x)ξ)dx = ∫
G

∥π(x)ξ∥2(⋅,⋅)dx ∈ ∥ξ∥2(⋅,⋅)[1/C,C] .

This shows that the norms induced by (⋅, ⋅) and ⟨⋅, ⋅⟩ are equivalent. So the latter induces the topology
on H. This finishes the proof of the proposition.
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8.1 Peter-Weyl theory

Peter-Weyl theory describes irreducible unitary representations of a compact group by decomposing
its regular representation into a direct sum of finite dimensional irreducible representations exhausting
all irreducible representations of the compact group.

Lemma 8.1.1. Let G be a unimodular locally compact group and f , g ∈ L2(G). Then f ∗ g is well-
defined everywhere and continuous.

Proof. As G is unimodular, we have g∗ ∈ L2(G). Hence, the scalar product ⟨f ,Lxg∗⟩ makes sense for
every x ∈ G. It is continuous in x by Lemma 4.3.1. Since

(f ∗ g)(x) = ∫
G

f (y)g(y−1x)dy = ∫
G

f (y)g∗(x−1y)dy = ⟨f ,Lxg∗⟩

this finishes the proof of the lemma.

Lemma 8.1.2. Let G be a locally compact group. If ξ ∈ L2(G) is a λG-invariant vector, then ξ is a
multiple of the constant function.

Proof. Let ξ ∈ L2(G) be a λG-invariant vector and chose a direct net (fu)U∈U for G consisting of
elements from (L2 ∩L1)(G). By Lemma 8.1.1, we have ρ(fU)ξ ∈ L2(G)∩C0(G) for every U ∈ U . Note
that ρ(fU)ξ is λG-invariant, since λG and ρG commute by Proposition 4.3.7. So ρ(fU)ξ ∈ C1G by
continuity and left G-invariance. Letting U ↓ {e} run through U , Lemma 6.2.4 applies to show that
ρ(fU) converges to idL2(G) strongly. We conclude that ξ = limU ρ(fU)ξ ∈ C1G .

Proposition 8.1.3. Let G be a locally compact group. The following statements are equivalent.

• G is compact.

• The Haar measure of G is finite.

• 1G ∈ L2(G).

• 1G ≤ λG .

• 1G ≤ λG with multiplicity 1.

Proof. We first show that G is compact if and only if its Haar measure is finite. The forward implication
was already proven in Proposition 8.0.1. Assume that G is not compact and let O ⊂ G be a compact
set with non-empty interior. For g, h ∈ G we have gO∩hO ≠ ∅ if and only if g ∈ hO ⋅O−1. Since G is not
compact, it is not the union of finitely many translates of O⋅O−1. Hence we find a sequence of elements
(gi)i∈N such that giO ∩ gjO = ∅ for all i ≠ j . We infer that µ(G) ≥ µ(⋃i∈N giO) = ∑i∈N µ(giO) =∞.

We show that the remaining statements of the proposition are equivalent to G having finite Haar
measure. If the Haar measure of G is finite, then 1G is square integrable and hence 1G ∈ L2(G).
Assuming that 1G ∈ L2(G), there is a non-zero G-invariant vector in L2(G), which shows that 1G ≤ λG .
Next assuming that 1G ≤ λG and ξ ∈ L2(G) is λG-invariant, we find that ξ ∈ C1G by Lemma 8.1.2. So
1G has multiplicity one in λG . Finally, we assume that 1g ≤ λG (with multiplicity one). Then there is
a non-zero λG-invariant vector in L2(G). By Lemma 8.1.2 it is a multiple of the constant function, so
that we have 1G ∈ L2(G). This shows that the Haar measure of G is finite.
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Lemma 8.1.4. Let K be a compact group and π an irreducible unitary representation of K. Then π
is contained in the left-regular representation of K. If π is finite dimensional, then its multiplicity in λ
is at most dimπ.

Proof. Since K is compact, we have 1 ≤ λ by Proposition 8.1.3. So Fell’s absorption principle
(Proposition 4.3.5) shows that

π ≅ π ⊗ 1 ≤ π ⊗ λ ≅ (dimπ)λ .

Since π is irreducible, this shows that π ≤ λ.
Assume that π is finite dimensional. Denote by mλπ the multiplicity of π in λ. If π denotes the

conjugate representation of π, then Proposition 3.1.10 says that 1 ≤ π ⊗ π. So mλπ ≤ mπ⊗λ1 , where
the latter denotes the multiplicity of 1 in π ⊗ λ. Further,

π ⊗ λ ≅ (dimπ)λ ≅ (dimπ)λ

in combination with Proposition 8.1.3 shows that mπ⊗λ1 ≤ dimπmλ1 = dimπ. This finishes the proof
of the lemma.

Before we prove the next lemma, we recall integral operators. If X is a locally compact space with
a σ-finite Radon measure, then every L2-kernel F ∶ X ×X → C gives rise to a Hilbert-Schmidt integral
operator KF ∶ L2(X)→ L2(X) defined by (KF ξ)(x) = ∫X f (y)F (x, y)dy .

Lemma 8.1.5. Let K be a compact group and f ∈ L2(K). Then λ(f ) and ρ(f ) and are Hilbert-
Schmidt operators.

Proof. First observe that L2(K) ⊂ L1(K), since the Haar measure of K is finite. So the statement of
the lemma makes sense. Since λ ≅ ρ by Proposition 4.3.3, it suffices to show that λ(f ) is Hilbert-
Schmidt for all f ∈ L2(K). Consider the continuous kernel F ∶ K×K → C defined as F (x, y) = f (yx−1).
Since F is continuous on the compact set K ×K, it is 2-integrable. Hence the integral operator KF
is Hilbert-Schmidt on L2(K). We next calculate with g, h ∈ L2(K).

⟨λ(f )g, h⟩ = ∫
K

⟨f (x)λxg, h⟩dx

= ∫
K

∫
K

f (x)(λxg)(y)h(y)dydx

= ∫
K

∫
K

f (x)g(x−1y)h(y)dydx

= ∫
K

∫
K

f (x)g(x−1y)h(y)dxdy

= ∫
K

∫
K

f (yx)g(x−1)h(y)dxdy

= ∫
K

∫
K

f (yx−1)g(x)h(y)dxdy (unimodularity)

= ∫
K

(KF g)(y)h(y)dy

= ⟨KF g, h⟩ .

It follows that λ(f ) = KF is Hilbert-Schmidt.
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Remark 8.1.6. It follows immediately from Proposition 3.1.4 that a finite dimensional unitary repre-
sentation of a topological group is the direct sum of irreducible representations.

We next come to one important intermediate step to the Peter-Weyl theorem.

Lemma 8.1.7. The regular representation of a compact group is a direct sum of finite dimensional
irreducible unitary representations.

Proof. Let K be a compact group. In view of Remark 8.1.6, it suffices to show that the
regular representation of K is a direct sum of finite dimensional representations. Let H ∶=
{ξ ∈ L2(K) ∣ spanλ(K)ξ is fin. dim}. We have to show that H = L2(K). We assume that this is
not the case and we will deduce a contradiction. First note that H is λ × ρ-invariant. Next, if f ∈ H⊥,
then λ(fU)f → f where (fU)U is a Dirac net in L2(K). Since Lemma 8.1.1 says that λ(fU)f ∈ C(K) it
follows that H⊥ ∩C(K) ≠ 0. Take f ∈ H⊥ ∩C(K). Then ρ(f ) is a Hilbert-Schmidt operator by Lemma
8.1.5 and hence T = ρ(f )∗ρ(f ) is a positive compact operator in ρ(L1(K)). We have

(ρ(f )f )(x) = ∫
K

f (y)f (xy)dy = ∫
K

f (y)f ∗(y−1x−1)dy = (f ∗ f ∗)(x−1) ,

showing that ⟨T f , f ⟩ = ⟨ρ(f )f , ρ(f )f ⟩ ≠ 0. So TH⊥ ≠ 0.
Theorem 7.1.2 provides us with spectral projections Eν , ν ∈ σ(T ) of the positive compact operator

T . Then Eν is a finite rank projection for every ν ≠ 0. Since TH⊥ ≠ 0, there is some ν ≠ 0 such that
EνH

⊥ ≠ 0. Further, T ∈ ρ(L1(K)) implies that Eν ∈ C∗(ρ(L1(K))), which shows that EνH
⊥ ⊂ H⊥ is

a λ-invariant subspace. We thus found a non-zero finite dimensional λ-invariant subspace inside H⊥,
which contradicts the definition of H. This finishes the proof of the lemma.

Lemma 8.1.7 allows us to obtain the following statement on complete reducibility of unitary
representations of a compact group.

Proposition 8.1.8. Let K be a compact group. Then every unitary representation of K is completely
reducible.

Proof. Let π be a unitary representation of K. Then π ≤ (dimπ)λK by Fells absorption principle. So
Lemma 8.1.7 says that π is a direct sum of irreducible representations.

Summarising the content of this section up to this point, Lemmas 8.1.4 and 8.1.7 show that every
irreducible representation of a compact group is finite and its regular representation is a direct sum of
these irreducible representations each appearing with multiplicity bounded by its dimension. Our next
aim is to show that this multiplicity actually equals the dimension of the irreducible representation.
We are going to do so, by exhibiting sufficiently many functions in L2 which transform the same
way as vectors in the given irreducible representation. The functions associated with an irreducible
representation are so called matrix coefficients in the sense of the following definition. Note that every
matrix coefficient is a continuous function.

Definition 8.1.9. Let G be a locally compact group and (π,H) a unitary representation of G. Every
function f (g) = ⟨π(g)ξ, η⟩ for ξ, η ∈ H is called a matrix coefficient of π.

Lemma 8.1.10. Let K be a compact group and (π,H) an irreducible representation of K. Let
(ei)dimπi=1 be an orthonormal basis for H. Define the matrix coefficients

fi j(g) ∶= ⟨π(g)ei , ej⟩ .
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Then the orthogonality relations

⟨λgfi j , fkl⟩ = δik
1

dimπ
⟨π(g)ej , el⟩

⟨ρgfi j , fkl⟩ = δj l
1

dimπ
⟨π(g)ei , ek⟩

hold for all 1 ≤ i , j, k, l ≤ dimπ and all g ∈ K. In particular, the following statements are true.

• The elements (
√

dimπfi j)dimπi,j=1 form an orthonormal system in L2(K).

• For every 1 ≤ i ≤ dimπ, the space span{fi j ∣1 ≤ j ≤ dimπ} is a λ-invariant subspace of L2(K).
The restriction of λ to this subspace is isomorphic to π.

• For every 1 ≤ j ≤ dimπ, the space span{fi j ∣1 ≤ i ≤ dimπ} is a ρ-invariant subspace of L2(K).
The restriction of ρ to this subspace is isomorphic to π.

Proof. It suffices to show the two equalities

⟨λgfi j , fkl⟩ = δik
1

dimπ
⟨π(g)ej , el⟩(8.1)

⟨ρgfi j , fkl⟩ = δj l
1

dimπ
⟨π(g)ei , ek⟩(8.2)

for all 1 ≤ i , j, k, l ≤ dimπ and all g ∈ K.
For 1 ≤ i , j ≤ dimπ consider the rank-one operator Ti j ∶ H → H ∶ ξ ↦ ⟨ξ, ei⟩ej . Putting Si j ∶=

∫K π(k−1)Ti jπ(k)dk , we obtain an intertwiner Si j from π to π, meaning that Si jπ(k) = π(k)Si j for
all k ∈ K. We hence have Si j = ci j idH for some scalar ci j by the Lemma of Schur (Corollary 3.2.5).
We have

ci j(dimπ) = tr(Si j)

= tr(∫
K

π(k−1Ti jπ(k)dk)

= ∫
K

tr(π(k−1)Ti jπ(k))dk

= ∫
K

tr(Ti j)dk

= δi j .

It follows that Si j = δi j 1
dimπ

idH for all 1 ≤ i , j ≤ dimπ.
We fist show that

⟨λgfi j , fkl⟩ = δik
1

dimπ
⟨π(g)ej , el⟩ .

For variables 1 ≤ i , l , r, k ≤ dimπ we have

∫
K

⟨π(h)ei , er ⟩⟨π(h−1)el , ek⟩dh = ∫
K

⟨π(h−1)Tr lπ(h)ei , ek⟩dh

= ⟨(∫
K

π(h−1)Tr lπ(h)dh)ei , ek⟩

= ⟨Sr lei , ek⟩

= 1

dimπ
δr lδik .
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So we obtain for 1 ≤ i , j, k, l ≤ dimπ and g ∈ K that

⟨λgfi j , fkl⟩ = ∫
K

fi j(g−1h)fkl(h)dh

= ∫
K

⟨π(g−1h)ei , ej⟩⟨π(h)ek , el⟩dh

= ∫
K

⟨π(h)ei , π(g)ej⟩⟨π(h−1)el , ek⟩dh

=
dimπ

∑
r=1

∫
K

⟨π(h)ei , er ⟩⟨er , π(g)ej⟩⟨π(h−1)el , ek⟩dh

=
dimπ

∑
r=1

⟨er , π(g)ej⟩(∫
K

⟨π(h)ei , er ⟩⟨π(h−1)el , ek⟩dh)

=
dimπ

∑
r=1

⟨er , π(g)ej⟩
1

dimπ
δr lδik

= 1

dimπ
δik⟨el , π(g)ej⟩

= 1

dimπ
δik⟨π(g)ej , el⟩ .

This shows the first formula (8.1).
In order to prove the second equation (8.2), we first take indices 1 ≤ j, k, r, l ≤ dimπ and obtain

∫
K

⟨er , π(h−1)ej⟩⟨π(h)ek , el⟩dh = ∫
K

⟨er , π(h−1)Tj lπ(h)ek⟩dh

= ⟨er , (∫
K

π(h−1)Tj lπ(h)dh)ek⟩

= ⟨er , Sj lek⟩

= 1

dimπ
δj lδrk .

Using this equation, we obtain for 1 ≤ i , j, k, l ≤ dimπ and for g ∈ K

⟨ρgfi j , fkl⟩ = ∫
K

fi j(kg)fkl(h)dh

= ∫ ⟨π(hg)ei , ej⟩⟨π(h)ek , el⟩dh

= ∫
K

⟨π(g)ei , π(h−1)ej⟩⟨el , π(h)ek⟩dh

=
dimπ

∑
r=1

⟨π(g)ei , er ⟩(∫
K

⟨er , π(h−1)ej⟩⟨el , π(h)ek⟩dh)

=
dimπ

∑
r=1

⟨π(g)ei , er ⟩
1

dimπ
δj lδrk

= 1

dimπ
δl j⟨π(g)ei , ek⟩ .

This shows the second equation (8.2) and finishes the proof of the lemma.
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We summarise the Lemmas 8.1.4, 8.1.7 and 8.1.10 to obtain the Peter-Weyl theorem.

Theorem 8.1.11. Let K be a compact group. For π ∈ K̂ denote by (f πij )dimπi,j=1 be the matrix
coefficients associated with an orthonormal basis of the underlying Hilbert space of π. Then
(
√

dimπf πij )π∈K̂,i ,j∈{1,...,dimπ} is an orthonormal basis for L2(K).

We are next going to give an alternative formulation of the Peter-Weyl theorem, which is less
explicit in terms of the choice of an orthonormal basis of L2(K), but is more strongly emphasising the
structure of the representation of K ×K on L2(K) which is only implicitly described in Lemma 8.1.10
and Theorem 8.1.11. Let us start with a base-free formulation of the orthogonality relations proven
in Lemma 8.1.10.

Lemma 8.1.12. Let K be a compact group and (π,H) an irreducible representation of K. For ξ, η ∈ H
denote the associated matrix coefficient by fξ,η. Then

⟨fξ1,η1 , fξ2,η2⟩L2(K) =
1

dimπ
⟨ξ1, ξ2⟩⟨η2, η1⟩ ,

for all ξ1, ξ2, η1, η2 ∈ H.

Proof. Let (ei)i be a basis of H and let ξ1, ξ2, η1, η2 ∈ H. We calculate, using the orthogonality
relations proven in Lemma 8.1.10.

⟨fξ1,η1 , fξ2,η2⟩L2(K) = ∫
K

fξ1,η1(g)fξ2,η2(g)ddg

= ∫
K

⟨π(g)ξ1, η1⟩⟨π(g)ξ2, η2⟩dg

=∑
i ,j
∫
K

⟨π(g)ξ1, ei⟩⟨ei , η1⟩⟨η2, ej⟩⟨ej , π(g)ξ2⟩dg

= ∑
i ,j,k,l

∫
K

⟨ξ1, ek⟩⟨π(g)ek , ei⟩⟨ei , η1⟩⟨η2, ej⟩⟨ej , π(g)el⟩⟨el , ξ2⟩dg

= ∑
i ,j,k,l

⟨ξ1, ek⟩⟨ei , η1⟩⟨η2, ej⟩⟨el , ξ2⟩⟨fki , fl j⟩L2(K)

= 1

dimπ
∑
i ,j,k,l

δklδi j⟨ξ1, ek⟩⟨ei , η1⟩⟨η2, ej⟩⟨el , ξ2⟩

= 1

dimπ
∑
i ,k

⟨ξ1, ek⟩⟨ek , ξ2⟩⟨η2, ei⟩⟨ei , η1⟩

= 1

dimπ
⟨ξ1, ξ2⟩⟨η2, η1⟩ .

We can now establish a base-free formulation of the remaining statements of Lemma 8.1.10.

Lemma 8.1.13. Let K be a compact group and (π,H) an irreducible unitary representation of K.
The map V ∶ HS(H) → L2(K) satisfying V (T )(g) =

√
dimπTr(π(g)T ) is a well-defined isometric

intertwiner from Adπ to λ × ρ.

Proof. Since HS(H) is densely spanned by rank-one operators, it suffices to check that V preserves
the scalar product on such elements. Note that for all ξ, η ∈ H we have

V (eξ,η)(g) =
√

dimπTr(π(g)eξ,η) =
√

dimπTr(eπ(g)ξ,η) =
√

dimπ⟨π(g)ξ, η⟩ =
√

dimπfξ,η(g) ,
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where the last term is the evaluation of a matrix coefficient. Using Lemmas 7.4.3 and 8.1.12, we
obtain for ξ1, ξ2, η1, η2 ∈ H that

⟨V eξ1,η1 , V eξ2,η2⟩L2(K) = dimπ⟨fξ1,η1 , fξ2,η2⟩L2(K)
= ⟨ξ1, ξ2⟩⟨η2, η1⟩
= ⟨ξ1, ξ2⟩⟨η1, η2⟩
= ⟨eξ1,η1 , eξ2,η2⟩HS(H) .

This shows that V is a well-defined isometry. We check that V is an intertwiner from Adπ to λ × ρ.
Again it suffices to check this on a generating set, that is V (Adπ)(g, h)eξ,η = (λ × ρ)(g, h)V eξ,η for
all g, h ∈ K and ξ, η ∈ H. For k ∈ K we have

(V (Adπ)(g, h)eξ,η)(k) =
√

dimπTr(π(k)π(h)eξ,ηπ(g)∗)
=
√

dimπTr(eπ(kh)ξ,π(g)η)
=
√

dimπTr(eπ(g−1kh)ξ,η)
= ((λ × ρ)(g, h)V eξ,η)(k) .

This finishes the proof of the lemma.

We can now give a second formulation of the Peter-Weyl theorem.

Theorem 8.1.14. Let K be a compact group. For every π ∈ K̂ denote by Vπ ∶ HS(Hπ) → L2(K) the
isometry satisfying Vπ(T )(g) =

√
dimπTr(π(g)T ) for all g ∈ K. Then

⊕
π∈K̂

Vπ ∶ `2-⊕
π∈K̂
HS(Hπ)→ L2(K)

is a unitary equivalence between ⊕π∈K̂ Adπ and λ × ρ.

Proof. For π ∈ K̂, ξ, η ∈ H and g ∈ K, we have eξ,ηπ(g)∗ = eξ,π(g)η. So the definition of Adπ and
Lemma 8.1.13 show that λ∣imVπ ≅ (dimπ)π. In particular, the images of Vπ, π ∈ K̂ are pairwise
orthogonal. Hence V = ⊕π∈K̂ Vπ is an isometric intertwiner from ⊕π∈K̂ Adπ to λ × ρ. We have
λ∣imV ≅⊕π∈K̂(dimπ)π so that Theorem 8.1.11 implies surjectivity of V .

8.2 Character theory

Character theory allows us to study unitary representations of compact groups by means of certain
functions.

Definition 8.2.1. Let G be topological group and (π,H) a finite dimensional unitary representation
of G. Then χπ(g) ∶= Tr(π(g)) is called the character of π.

Let us right away fix the observation that a character only depends on the isomorphism class of a
unitary representation.

Lemma 8.2.2. Let G be a topological group. The character of a finite dimensional unitary represen-
tation π of G only depends on the isomorphism class of π.
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Proof. Let π ≅ ν be isomorphic finite dimensional unitary representations of G. Then there is an
intertwiner U ∶ Hπ → Hν . We have

χν(x) = TrHν(ν(x)) = TrHν(Uπ(x)U∗) = TrHπ(π(x)) = χπ(x) ,

by the uniqueness of the trace on B(Hπ). This finishes the proof of the lemma.

Remark 8.2.3. If G is a topological group and π a finite dimensional unitary representation of G, then
χπ is a conjugation invariant function on G. This follows from the properties of the trace. For all
x, y ∈ G we have

χπ(xy) = Tr(π(xy)) = Tr(π(x)π(y)) = Tr(π(y)π(x)) = χπ(yx) .

For compact groups, Peter-Weyl theory allows us to recover the isomorphism class of a unitary
representation from its character alone, which establishes a powerful correspondence between unitary
representations and certain functions on the compact group.

Proposition 8.2.4. Let K be a compact group.

• Let π, ν ∈ K̂ be irreducible unitary representations of K. Then ⟨χπ, χν⟩L2(K) = δπ,ν .

• The isomorphism class of a finite dimensional unitary representation π of K is uniquely deter-
mined by its character.

Proof. Let π, ν ∈ K̂ be irreducible unitary representations. Let (eπi )1≤i≤dimπ be an orthonormal basis
of Hπ and (eνi )1≤i≤dimν be an orthonormal basis of Hν . Denote the associated matrix coefficients by
(eπij )1≤i ,j≤dimπ and (eνij)1≤i ,j≤dimν . Theorem 8.1.11 implies that

⟨χπ, χν⟩ = ⟨∑
i

eπii ,∑
j

eνjj⟩ = dimπ
1

dimπ
δπ,ν = δπ,ν .

If π is a finite dimensional unitary representation of K and ν ∈ K̂, then we recover the multiplicity
of ν in π by

⟨χπ, χν⟩ = ∑
µ∈K̂

mπµ⟨χµ, χν⟩ = mπν .

So the isomorphism class of π is determined by χπ.

Let us turn to two useful applications of characters.

Theorem 8.2.5. Let K be a compact group. Then (χπ)π∈K̂ is an orthonormal basis for the space of
conjugation invariant functions in L2(K).

Proof. We already observed in Remark 8.2.3 that characters are conjugation invariant. Let L2Z(K) ⊂
L2(K) be the subspace of conjugation invariant elements. Denote by p ∶ L2(K)→ L2Z(K) the orthog-
onal projection. By Proposition 8.2.4 the characters of K form an orthonormal system in L2Z(K). We
have to show that they span a dense subspace of L2Z(K). We are going to show that the orthonormal
basis (eπij )π,i,j of L2(K) satisfies peπij ∈ Cχπ. Then the result follows thanks to the Peter-Weyl theorem
8.1.11. Since eπij is a continuous function, the element peπij is represented by the function

(peπij )(x) = ∫
K

eπij (k−1xk)dk .
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We have

∫
K

eπij (k−1xk)dk = ∫
K

⟨π(x)π(k)eπi , π(k)eπj ⟩dk

=
dimπ

∑
l=1

∫
K

⟨π(x)π(k)eπi , el⟩⟨el , π(k)eπj ⟩dk

=
dimπ

∑
l=1

∫
K

⟨π(k)eπi , π(x−1)el⟩⟨el , π(k)eπj ⟩dk

=
dimπ

∑
l ,r=1

∫
K

⟨π(k)eπi , er ⟩⟨er , π(x−1)el⟩⟨el , π(k)eπj ⟩dk

=
dimπ

∑
l ,r=1

eπlr(x)∫
K

eπir(k)eπjl (k)dk

= 1

dimπ

dimπ

∑
l ,r=1

δi jδr le
π
lr(x)

= 1

dimπ
δi j
dimπ

∑
l=1

eπll (x)

= 1

dimπ
δi jχπ(x) .

This finishes the proof of the theorem.

Corollary 8.2.6. Let F be a finite group. Then the number of conjugacy classes of F equals the
number of isomorphism classes of irreducible representations of F .

Proof. Theorem 8.2.5 says that the space of conjugation invariant functions in `2(F ) has a basis of
cardinality ∣K̂∣. Note that `2(F ) is the space of all functions on F , because F is finite. Further, every
conjugation invariant function on F is a unique linear combination of indicator functions on conjugacy
classes in F . Thus, the dimension of `2(F ) also equals the number of conjugacy classes in F . This
proves the corollary.

8.3 Operator algebras asssociated with compact groups

In this section we are going to describe the C∗- and von Neumann algebras associated with compact
groups. Let us start with the identification of the reduced and the maximal group C∗-algebra.

Proposition 8.3.1. Let K be a compact group. Then the canonical map λ ∶ C∗
max(K) → C∗

red(K) is
an isomorphism.

Proof. Since λ is surjective, it suffices to show that it is isometric, which can be checked on elements
from L1(K) ⊂ C∗

max(K). If π is a unitary representation of G, then π ≤ (dimπ)λ by Peter-Weyl theory
(e.g. Lemma 8.1.4). So for f ∈ L1(K) we obtain

∥π(f )∥ ≤ ∥λ⊕dimπ(f )∥ = ∥λ(f )∥ ,
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since ∥⊕i Ti∥ = supi ∥Ti∥ for any family of bounded operators Ti acting on some Hilbert space Hi . We
conclude that

∥f ∥C∗max = sup
π

∥π(f )∥ ≤ ∥λ(f )∥ ≤ ∥f ∥C∗max ,

where the supremum runs over all unitary representations π of K. This finishes the proof of the
proposition.

Remark 8.3.2. For reasons that will not be explained further, the fact that the natural *-homomophism
C∗
max(K) → C∗

red(K) is an isomorphism is expressed by saying that “compact groups have the weak
containment property”. We write C∗(K) to denote this unique C∗-algebra.

We are next going to decompose operator algebras associated with compact groups as direct sums
of matrix algebra. A central role in this operation is played by characters.

Proposition 8.3.3. Let K be a compact group and π ∈ K̂. The function (dimπ)χπ ∈ C(K) is the
projection onto the space spanned by matrix coefficients of π inside L2(K). It is central in C(K).

Proof. For π, ν ∈ K̂, let (eπi )1≤i≤dimπ and (eνi )1≤i≤dimν be orthogonal bases of Hπ and Hν , respectively.
Denote the associated matrix coefficients by (eπij )1≤i ,j≤dimπ and (eνij)1≤i ,j≤dimν . By Theorem 8.1.11 is
suffices to check that λ((dimπ)χπ)eνij = δπ,νeπ, for all 1 ≤ i , j ≤ dimν. We have

λ(χπ)eνij = χπ ∗ eνij .

We further obtain

χπ ∗ eνij(x) = ∫
K

χπ(y)eνij(y−1x)dy

=
dimπ

∑
k=1

∫
K

eπkk(y)eνij(y−1x)dy

=
dimπ

∑
k=1

∫
K

eπkk(y)⟨ν(x)eνi , ν(y)eνj ⟩dy

=
dimπ

∑
k,r=1

∫
K

eπkk(y)eνjr(y)⟨ν(x)e
ν
i , e

ν
r ⟩dy

=
dimπ

∑
k,r=1

⟨ν(x)eνi , eνr ⟩∫
K

eπkk(y)eνjr(y)dy

= 1

dimπ
δπ,ν⟨π(x)eνi , eνj ⟩

= 1

dimπ
δπ,νe

π
ij (x) .

This shows that (dimπ)χπ is a projection.
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If f ∈ C(K) and x ∈ K, then Remark 8.2.3 implies that

(χπ ∗ f )(x) = ∫
K

χπ(y)f (y−1x)dy

= ∫
K

χπ(xy)f (y−1)dy

= ∫
K

f (y)χπ(xy−1)dy

= ∫
K

f (y)χπ(y−1x)dy

= (f ∗χπ)(x) .

This shows that χπ is central in C(K) and so is (dimπ)χπ. This finishes the proof of the proposition.

Notation 8.3.4. Let K be a compact group and π ∈ K̂. The projection pπ =
√

dimπχπ ∈ C(K) is
called the isotypical projection associated with π. It is an element of C∗(K) and of L(K).

We want to prove that isotypical projections give rise to natural approximate identities of group
C∗-algebras in the sense of Definition 6.2.3. In order to do so, let’s fix the following lemma.

Lemma 8.3.5. Let K be a compact group and f ∈ C(K). Then

∥λ(f )∥ ≤ ∥f ∥1 ≤ ∥f ∥2 .

Proof. The inequality ∥λ(f )∥ ≤ ∥f ∥1 was already proven in Proposition 6.3.3. Further, the Cauchy-
Schwarz inequality implies that

∥f ∥1 = ∥f 1K∥1 ≤ ∥f ∥2∥1K∥2 = ∥f ∥2 .

This finishes the proof of the lemma.

We next give a conceptual framework for the treatment of approximate identities in C∗-algebras.
The next definition goes beyond the terminology of these notes, but it is immediately clarified by the
following proposition.

Definition 8.3.6. Let A be a C∗-algebra. The multiplier algebra of A is the universal C∗-algebra M(A)
that contains A as an essential ideal A�M(A), that is if mA = 0, then m = 0 for all x ∈ M(A).

A net (mi) ∈ M(A) converges to m ∈ M(A) strictly, if mia → ma and ami → am in norm for all
a ∈ A.

Proposition 8.3.7. Let A ⊂ B(H) be a C∗-algebra with a non-degenerate representation. Then
A ⊂ M(A) is isomorphic with A ⊂ {T ∈ B(H) ∣ ∀a ∈ A ∶ Ta, aT ∈ A}.

Remark 8.3.8. Let A be a C∗-algebra. It follows right from the definitions that a net (ai)i∈I in A is
an approximate identity of A if and only if ai → 1 strictly in M(A).

We have now developed the appropriate language to describe the isotypical projections as elements
of the group C∗-algebra and of the group von Neumann algebra of a compact group.
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Proposition 8.3.9. Let K be a compact group. Then

(i) ∑π∈K̂ pπ = 1 in the strict topology of M(C∗(K)), and

(ii) ∑π∈K̂ pπ = 1 in the strong topology of L(K).

Proof. We first show that ∑π∈K̂ pπ = 1 in the strong topology of L(K). Since the strong topology of
L(K) is the restriction of the strong topology of B(L2(K)) is suffices appeal to Proposition 8.3.3 and
the Peter-Weyl theorem 8.1.11.

We next prove that ∑π∈K̂ pπ = 1 in the strict topology of M(C∗(K)). Since pπ are pairwise
orthogonal projections by Proposition 8.3.3, the partial sums of ∑π∈K̂ pπ all have operator norm equal
to one. Further, each summand is self-adjoint, so that (∑π∈F pπ)a∗ → a∗ implies that a(∑π∈F pπ)→ a
for all a ∈ C∗(K), where F ran through finite subsets of K̂. We conclude that it suffices to check that
∑π∈F pπλ(f )→ λ(f ) for all f ∈ C(K).

Let f ∈ C(K) and ε > 0. By Proposition 8.3.3 and the Peter-Weyl theorem 8.1.11, there is some
finite subset F ⊂ K̂ such that ∥∑π∈F pπf − f ∥2 < ε. Then Lemma 8.3.5 implies that

∥ ∑
π∈F

pπλ(f ) − λ(f )∥ = ∥λ(∑
π∈F

pπf − f ∥ ≤ ∥ ∑
π∈F

pπf − f ∥2 < ε ,

showing that ∑π∈F pπλ(f )→ λ(f ) indeed. So ∑π∈K̂ pπ = 1 in the strict topology of M(C∗(K)). This
finishes the proof of the proposition.

We summarise the content of this section in the following concise statement describe the group
C∗-algebra and the group von Neumann algebra of a compact group.

Notation 8.3.10. Let (Ai)i∈I be a family of C∗-algebras. Then

c0-⊕
i∈I
Ai = {(ai)i∈I ∈ Πi∈IAi ∣ ∥ai∥→ 0}

is the C∗-algebraic direct sum of the (Ai)i and

`∞-⊕
i∈I
Ai = {(ai)i∈I ∈ Πi∈IAi ∣ sup

i∈I
∥ai∥ <∞} .

In case where all (Ai)i are von Neumann algebras, `∞-⊕i∈I Ai is a von Neumann algebra too.

Theorem 8.3.11. Let K be a compact group. Then

C∗(K) = c0-⊕
π∈K̂

pπC∗(K) ≅ c0-⊕
π∈K̂

Mdimπ(C)

and

L(K) = `∞-⊕
π∈K̂

pπL(K) ≅ `∞-⊕
π∈K̂

Mdimπ(C) .

Proof. We first treat C∗(K). Since ∑π∈K̂ pπ is an approximate unit in C∗(K) by Proposition 8.3.9
and the pπ, π ∈ K̂ are pairwise orthogonal central projections in C∗(K), by Proposition 8.3.3, we
obtain the equality

C∗(K) = c0-⊕
π∈K̂

pπC∗(K) .
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We have to identify the direct summands pπC∗(K). By Proposition 8.3.3 and the base-free ver-
sion of the Peter-Weyl Theorem 8.1.14, we can naturally identify pπL2(K) ≅ Hπ ⊗ Hπ and see
that pπC∗(K) ⊂ B(Hπ ⊗ Hπ) = B(Hπ) ⊗ B(Hπ) acting irreducibly on each subspace Hπ ⊗ η,
η ∈ Hπ. So pπC∗(K) ⊃ B(Hπ) ⊗ 1. A similar argument employing the right regular representa-
tion shows that pπC∗(ρ(L1(K))) ⊃ 1 ⊗ B(Hπ). Since C∗(K) and C∗(ρ(K)) commute, this implies
that pπC∗(K) = B(Hπ)⊗ 1 ≅ Mdimπ(C). This finishes the C∗-algebraic part of the theorem.

As for the C∗-algebra, we see from Propositions 8.3.3 and 8.3.9 that L(K) = `∞-⊕π∈K̂ pπL(K).
Further, pπL(K) ⊂ PπC∗(K) is a dense and finite dimensional subalgebra. It follows that pπL(K) =
pπC∗(K) ≅ Mdimπ(C), which finishes the proof of the theorem.

Remark 8.3.12. We appealed in the proof of Theorem 8.3.11 to the fact that the central pairwise
orthogonal projections pπ, whose partial sums form an approximate identity of C∗(K) and of L(K)
(in the strong topology) respectively give rise to a direct sum decomposition. This can be proven in a
completely general C∗-algebraic and von Neumann algebraic setting, but will not be further investigated
here.
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9 Abelian groups: the Fourier transform and Pontryagin duality

In this section we are going to study unitary representations of abelian groups. It is partially based
on Chapter 3 of [DE14]. It turns out that a generalisation of the classical Fourier transform (Section
9.3) and a certain duality theory termed Pontryagin duality (Section 9.5) are most suitable for this.

We recall that a character of a topological group G is a continuous group homomorphism G → S1.
Let us remark, that in the literature sometimes such characters are more precisely called unitary
characters and a character is allowed to take values in all of the multiplicative group C×. We denote
by Char(G) = {χ ∶ G → S1 ∣ χ character} the set of all characters of G.

Let us start by the following observation, motivating the perspective taken in this section.

Proposition 9.0.1. Let G be an abelian topological group. Then every irreducible representation of G
is one-dimensional. In particular, there is a one-to-one correspondence between isomorphism classes
of irreducible unitary representations and characters of G.

Proof. Let π ∶ G → U(H) be an irreducible representation. By Proposition 3.2.4 (Schur’s lemma),
we have π(G) ⊂ π(G)′ ⊂ C. Let ξ ∈ H be a non-zero vector. Since G is irreducible, we have
H = spanπ(G)ξ ⊂ span S1ξ = Cξ. This shows that H is one-dimensional.

Since S1 ≅ U(H) canonically for every one-dimensional Hilbert space H, we obtain the claimed
one-to-one correspondence between irreducible unitary representations and characters of G.

In order to underline the important role of characters of abelian groups, let us mention the fact that
every unitary representation of an abelian topological group admits a unique decomposition as a direct
integral of irreducible unitary representations – a direct integral decomposition being a generalisation
of a direct sum decomposition. In view of Proposition 9.0.1, this shows that we have to understand
characters of abelian groups in order to understand its representation theory.

Before we proceed to the systematic study of characters of abelian locally compact groups, we
argue that also characters of other groups are best studied in the setting of abelian groups.

Definition 9.0.2. Let G be a topological group. Then [G,G] = ⟨[g, h] ∣ g, h ∈ G⟩ is called the
(algebraic) commutator subgroup of G.

Proposition 9.0.3. Let G be a topological group. Then commutator subgroup of G and its closure
are normal subgroups of G.

Proof. If [G,G] ≤ G is normal, so is its closure by Proposition 2.2.4. In order to prove this, it suffices
to show that the set {[g, h] ∣ g, h ∈ G} is conjugation invariant. But this follows from the identity

x[g, h]x−1 = xghg1h−1x1 = xg(x−1x)h(x−1x)g−1(x−1x)h−1x−1

= (xgx−1)(xhx−1)(xgx−1)−1(xhx−1)−1 = [xgx−1, xhx−1] .

Definition 9.0.4. The abelianisation of a topological group G is Gab = G/[G,G].

Proposition 9.0.5. Let G be a topological group and π ∶ G → H a continuous homomorphism into an
abelian topological group. Then π factors through G → Gab via a unique continuous homomorphism
Gab → H. In particular, every character of G factors through G → Gab.

Proof. Let π ∶ G → H be a continuous homomorphism into an abelian topological group. Then kerπ is
closed in G. So it suffices to show that [g, h] ∈ kerπ for all g, h ∈ G. This follows from the calculation

π([g, h]) = π(ghg−1h−1) = π(g)π(h)π(g)−1π(h)−1 = [π(g), π(h)] = eH ,

which proves the proposition.
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9.1 Characters and the Pontryagin dual

In this section we are going to introduce the character group as a topological group. We are going to
focus on the character groups of locally compact groups.

Proposition 9.1.1. Let G be a topological group. Then Char(G) is an abelian group when equipped
with pointwise multiplication and inversion. The constant function 1G ∈ Char(G) is the identity of
Char(G).

Proof. Since S1 is a group, pointwise multiplication and inversion are well-defined operations on
Char(G) and Char(G) becomes a group when equipped with these. Since S1 is abelian, also Char(G)
is abelian. Because 1 ∈ S1 is the identity of S1, it follows that 1G is the identity of Char(G).

We are next going to consider a natural topology on the character group.

Definition 9.1.2. Let X be locally compact space. The compact-open topology on C(X) is the
coarsest topology containing the sets

L(K,U) = {f ∈ C(X) ∣ f (K) ⊂ U}

for all K ⊂ X compact and all U ⊂ C open.

Lemma 9.1.3. Let X be a locally compact space. Then a net (fi)i∈I in C(X) converges to a function
f ∈ C(X) in the compact-open topology if and only if it converges uniformly on compact subsets of
X.

Proof. Let (fi)i∈I be a net in C(X) and f ∈ C(X). We first assume that fi → f in the compact-open
topology. Let K ⊂ X be compact and ε > 0. We have to show that there is i0 ∈ I such that for i ≥ i0 and
x ∈ K we have ∣fi(x) − f (x)∣ < ε. Since K ⊂ X is compact, X is locally compact and f is continuous,
there are finitely many relatively compact open sets U1, . . . , Un ⊂ X and there are c1, . . . , cn ∈ C such
that f (Uk) ⊂ Bε/4(cj) for all j ∈ {1, . . . , n} and such that K ⊂ ⋃nj=1 Uk . Let Kj ∶= Uj be the compact

closure of Uj for j ∈ {1, . . . , n}. Then f (Kj) ⊂ Bε/4(cj) ⊂ Bε/2(cj) for all j ∈ {1, . . . , n}, meaning that
⋂nj=1 L(Kj ,Bε/2(cj)) is a neighbourhood of f in the compact-open topology. Take i0 ∈ I such that
fi ∈ ⋂nj=1 L(Kj ,Bε/2(cj)) for all i ≥ i0. Then for x ∈ Kj and i ≥ i0 we have fi(x), f (x) ∈ Bε/2(cj). So
∣fi(x) − f (x)∣ ≤ diam(Bε/2(cj)) = ε. We showed that fi → f uniformly on compact subsets of X.

Assume now that fi → f uniformly on compact subsets of X. Let K ⊂ X be compact and
U ⊃ f (K) be open. Since f is continuous, f (K) ⊂ C is compact. So the lower semi-continuous
function c ↦ infc ′∈C∖U d(c, c ′) attains a minimum on f (K). It follows that there is ε > 0 such that
U ⊃ ⋃c∈f (K)Bε(c) ⊃ f (K). Take i0 ∈ I such that for i ≥ i0 and for x ∈ K we have ∣fi(x) − f (x)∣ < ε.
Then f (K) ⊂ U.

Proposition 9.1.4. Let G be a topological group. Then Char(G) is a Hausdorff topological group
with the compact-open topology.

Proof. Let us first check that Char(G) is a topological group. We have to check that if (χ1,i)i∈I and
(χ2,i)i∈I are convergent nets in Char(G) with limits χ1 and χ2, respectively, then χ1,iχ2,i → χ1χ2.
By Lemma 9.1.3, convergence in the compact-open topology is the same as uniform convergence on
compact subsets of G, which implies the previous statement immediately. The fact that Char(G) is
Hausdorff, follows away from the definition of the compact-open topology.
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Definition 9.1.5. Let G be a locally compact group. Then the topological group Char(G) is called
the character group of G. If A is an abelian locally compact group, we also write Â = Char(A) and
call it the Pontryagin dual of A.

It is important to recognise that the Pontryagin dual of a locally compact group is a locally compact
group again. We employ operator algebraic “Gelfand duality” in order to see this.

Definition 9.1.6. Let A be a C∗-algebra. A character on A is a non-zero *-homomorphism A → C.
If A is abelian, its spectrum Â, also denoted spec(A), is the set of characters of A equipped with the
weak-*-topology inherited from the inclusion into the dual A∗.

The following theorem summarises a classical result in C∗-algebra theory.

Theorem 9.1.7 (Gelfand-Naimark duality). For every abelian C∗-algebra A, the spectrum Â is a
locally compact Hausdorff space. The assignment A↦ Â is functorial from the category of abelian C∗-
algebras with non-degenerate *-homomorphisms to the category of locally compact Hausdorff spaces
with proper continuous maps. Together with the functor X ↦ C0(X), it establishes an equivalence of
categories.

Let us recall some notions and results from earlier sections. First, if A is a locally compact abelian
group, then Theorem 6.6.3 says that C∗

max(A) is an abelian C∗-algebra. Further, every character of
A can be identified with a one-dimensional unitary representation which in turn is identified with its
integrated form on C∗

max(A). So we obtain a bijection Â → spec(C∗
max(A)). Our aim is to show

that this bijection is a homeomorphism. The next lemma establishes a correspondence between the
weak-*-topology on spec(C∗

max(A)) and the compact-open topology on Â.

Lemma 9.1.8. Let A be a locally compact abelian group and χ0 in Â. Let C ⊂ A be a compact subset
and let ε > 0. Then there are f0, f1, . . . , fn ∈ L1(A) and δ > 0 such that for every χ ∈ Â, the inequalities
∣χ(fi) −χ0(fi)∣ < δ for all i ∈ {0,1, . . . , n} implies ∣χ(x) −χ0(x)∣ < ε for all x ∈ C.

Proof. For all χ ∈ Â we have

∣χ(x) −χ0(x)∣ = ∣χ0χ(x) − 1∣

and

∣χ(fi) −χ0(fi)∣ = ∣χ0χ(χ0fi) − 1A(χ0f )∣

so that we can assume that χ0 = 1A is the trivial character. In what follows, we will use the equality

χ(Lx f ) = ∫
A

χ(y)f (xy)dy = ∫
A

χ(xy)f (y)dy = χ(x)χ(f )

repeatedly.
Let f ∈ L1(A) satisfy 1A(f ) = ∫A f (x)dx = 1. By Lemma 4.3.1 (iv) we can find a an identity

neighbourhood U ⊂ A such that ∥Lx f − f ∥1 < ε/3 for all x ∈ U. There are x1, . . . , xn ∈ A such that
C ⊂ ⋃ni=1 xiU. Set f0 = f and fi = Lxi f for i ∈ {1, . . . , n}. Put δ = ε/3. Let χ ∈ Â satisfy ∣χ(fi) − 1∣ < δ
for all i ∈ {0,1, . . . , n}. Let x ∈ C and pick i ∈ {1, . . . , n} such that x ∈ xiU. Then we obtain the
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following estimates.

∣χ(x) − 1∣ = ∣χ(x) − 1∣
≤ ∣χ(x) −χ(x)χ(f )∣ + ∣χ(x)χ(f ) −χ(fi)∣ + ∣χ(fi) − 1∣
= ∣1 −χ(f )∣ + ∣χ(Lx f ) −χ(Lxi f )∣ + ∣χ(fi) − 1∣
≤ ε/3 + ∥Lx f − Lxi f ∥1 + ε/3

≤ ε .

Proposition 9.1.9. Let A be a locally compact abelian group. The map associating with a character
χ ∈ Â its integrated form on C∗

max(A) is a homeomorphism Â→ spec(C∗
max(A)).

Proof. Let us first observe that there is indeed a bijection Â → spec(C∗
max(A)). By Proposition

9.0.1, characters of A are in bijection with unitary equivalence classes of one-dimensional unitary
representations of A. Further, by Theorem 6.4.6 there is a bijection between unitary equivalence classes
of one-dimensional unitary representations of A and non-zero *-homomorphisms C∗

max(A) → C. This
establishes the aforementioned bijection Â → specC∗

max(A). It maps χ ∈ Â to the character satisfying
χ(f ) = ∫Aχ(x)f (x)dx for all f ∈ L1(A) ⊂ C∗

max(A).
We check that Â → spec(C∗

max(A)) is continuous and open. Assume that (χi)i∈I is a net of
characters in Â converging to A in the compact-open topology. It suffices to show that χi(f )→ χ(f )
for all f ∈ Cc(A) ⊂ C∗

max(A). Take f ∈ Cc(A), let ε > 0 and let i0 ∈ I be chosen such that ∣(χi−χ)(x)∣ < ε
for all x ∈ supp f . Then

∣(χi −χ)(f )∣ ≤ ∫
A

∣(χi −χ)(x)∣∣f (x)∣dx < ε∥f ∥1 .

This shows that χi → χ in spec(C∗
max(A)). Let us now show openness of Â → spec(C∗

max(A)). Let
(χi)i∈I be a net in Â and χ ∈ A be such that χi → χ in spec(C∗

max(A)). Let C ⊂ A be compact and
ε > 0. Let δ > 0 and f0, . . . , fn ∈ L1(A) be chosen according to Lemma 9.1.8 and let i0 ∈ I be chosen
such that ∣χi(fj) − χ(fj)∣ < δ for all j ∈ {0, . . . , n} and all i ≥ i0. Then the choice of δ and f0, . . . , fn
implies that ∣χi(x) −χ(x)∣ < ε for all x ∈ C and all i ≥ i0. This finishes the proof of the proposition.

Let us now summarise the results of this section.

Theorem 9.1.10. Let A be a locally compact abelian group. Then the Pontryagin dual Â is a locally
compact abelian group.

Proof. By Proposition 9.1.4, we know that Â is a Hausdorff topological group. Proposition 9.1.9
shows that Â is homeomorphic with the spectrum of an abelian C∗-algebra, which is locally compact
by Theorem 9.1.7. This shows that Â is indeed a locally compact abelian group.

Example 9.1.11. • The dual of Z is S1, since every homomorphism Z→ S1 is uniquely determined
by the image of 1 ∈ Z.

• The dual of S1 is Z, since every continuous homomorphism ϕ ∶ S1 → S1 gives rise a multiplicative
map R→ S1, which can be derived at 0, showing that ϕ(e it) = e int for some n ∈ Z.

• The dual of R is R, via the duality χt(s) = e ist .

Exercise 9.1.12. Show that the Pontryagin dual of a discrete abelian group is compact and that the
Pontryagin dual of a compact abelian group is discrete.
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9.2 The weak containment property for abelian groups

We mentioned the weak containment property in the context of compact groups in Remark 8.3.2. In
this section we are going to prove the weak containment property for locally compact abelian groups
A, meaning that the natural *-homomorphism C∗

max(A)→ C∗
red(A) is an isomorphism.

Lemma 9.2.1. Let G be a locally compact group, χ ∈ Char(G) and f ∈ L1(G). Then ∥f ∥C∗
red
(G) =

∥χf ∥C∗
red
(G).

Proof. Let ξ, η ∈ L2(G). Then

⟨λ(χf )ξ, η⟩ = ∫
G

∫
G

χ(y)f (y)ξ(y−1x)η(x)dydx

= ∫
G

∫
G

f (y)χ(y−1x)ξ(y−1x)χ(x)η(x)dydx

= ⟨λ(f )χξ,χη⟩ .

Since ∥χξ∥2 = ∥ξ∥2 and ∥χη∥2 = ∥η∥2, this finishes the proof of the lemma.

Theorem 9.2.2. Let A be a locally compact abelian group. Then the natural map λ ∶ C∗
max(A) →

C∗
red(A) is an isomorphism.

Proof. We first show that every character of C∗
max(A) factors through C∗

red(A). Let χ0 be a character
of C∗

red(A) considered as a character of C∗
max(A) after composition with λ. If χ ∈ spec(C∗

max(A)),
then Lemma 9.2.1 shows

∣χ(f )∣ = ∣χ0(χ0χf )∣ ≤ ∥χ0χf ∥C∗
red
(A) = ∥f ∥C∗

red
(A) .

So χ indeed factors through C∗
red(A).

Now assume that x ∈ C∗
max(A) satisfies λ(x) = 0. And let χ ∈ spec(C∗

max(A)) be a character. Then
χ factors through λ and hence χ(x) = 0. Since C∗

max(A) is abelian, characters separate its points, so
that x = 0 follows. This shows that λ is injective and hence a *-isomorphism.

Notation 9.2.3. In accordance with Remark 8.3.2, if A is an abelian locally compact group, then we
write C∗(A) = C∗

red(A) ≅ C∗
max(A) for the group C∗-algebra of A.

9.3 The Fourier transform

An important tool when studying abelian groups is the so called Fourier transform. Thanks to our
operator algebraic setting, we can derive it from Gelfand-Naimark duality.

Definition 9.3.1. Let A be a locally compact abelian group. Let ∶ C0(Â) → C0(Â) be the isomor-

phism induced by conjugation of characters. The composition F ∶ L1(A) → C∗(A) → C0(Â) → C0(Â)
is called Fourier transform. We write f̂ = F f for the Fourier transform of f ∈ L1(A).

Let us fix for future use an integral formula for the Fourier transform of an L1-function.

Proposition 9.3.2. Let A be a locally compact abelian group. Then the Fourier transform satisfies

f̂ (χ) = ∫
A

f (x)χ(x)dx ,

for all f ∈ L1(A). In particular, χ↦ ∫A f (x)χ(x)dx is a function in C0(Â).
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Proof. Theorem 9.1.7 and the explanations following it show that for χ ∈ Â, the isomorphism C∗(A)→
C0(Â) carries the integrated form of χ to the evaluation homomorphism at χ. So f̂ (χ) is the integrated
form of χ evaluated at f . Hence

f̂ (χ) = ∫
A

f (x)χ(x)dx

as claimed by the proposition.

Remark 9.3.3. Although implicit in the notation, it is important to note that the Fourier transform
depends on the concrete choice of a Haar measure on an abelian locally compact group A through the
definition of L1(A).

9.4 The Plancherel measure

In order to understand the representation theory of a locally compact abelian group A, it suffices
to understand its left-regular representation according to Theorem 9.2.2. Hence, our aim will be to
decompose L2(A) in terms of Â. It will turn out that after choice of a Haar measure on A there is a
unique Haar measure on Â such that for all f ∈ (L1 ∩C0)(A) with f̂ ∈ L1(Â) we have

(9.1) ∫
Â

f̂ (χ)dχ = f (e) .

This will be the content of Theorem 9.5.11.
We start by defining a class of functions in C(A), which will be our main technical tool in this

section.

Definition 9.4.1. Let A be a abelian locally compact group. Then

C∗
0(A) = ι((L1 ∩C0)(A)) ⊂ C0(A)⊕`∞ C0(Â) ,

where C0(A)⊕`∞ C0(Â) denotes the algebraic direct sum of C(A) and C0(Â) equipped with the norm
∥(f ,ϕ)∥`∞ = max{∥f ∥, ∥ϕ∥} and ι ∶ (L1 ∩ C0)(A) → C0(A)⊕`∞ C0(Â) is defined by ι(f ) = (f , f̂ ). We
denote the norm of C∗

0(A) by ∥ ⋅ ∥∗0.

Lemma 9.4.2. Let A be an abelian locally compact group and denote by π0 ∶ C0(A) ⊕`∞ C0(Â) →
C0(A) and π∗ ∶ C0(A) ⊕`∞ C0(Â) → C0(Â) the coordinate projections. Then π0∣C∗0(A) and π∗∣C∗0(A)
are injective.

Proof. Let (f0, f∗) ∈ C∗
0(A) and interpret f∗ ∈ C∗(A) ≅ C0(Â) via the Gelfand transform. We will show

that ⟨f∗(ξ), η⟩ = ⟨f0∗ξ, η⟩ for all ξ, η ∈ Cc(A) ⊂ L2(A). Then f∗ = 0 if and only if f0 = 0 follows, proving
the lemma.

Let ξ, η ∈ Cc(A). Let (fn)n be a sequence in (L1 ∩C0)(A) such that fn → f0 uniformly and f → f∗
in C∗(A). We have fn ∗ ξ → f0 ∗ ξ uniformly and fn ∗ ξ = λ(fn)ξ → f∗(ξ) in L2(A). Hence, using the
fact that η has compact support, we obtain that ⟨fn ∗ ξ, η⟩ → ⟨f0 ∗ ξ, η⟩ and ⟨fn ∗ ξ, η⟩ → ⟨f∗(ξ), η⟩.
This finishes the proof of the lemma.

Notation 9.4.3. From now on, we will identity elements f = (f0, f∗) ∈ C∗
0(A) with their first component,

thereby considering C∗
0(A) as a subset of C0(A). We write f̂ = f∗ for the second component.
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We are next going to collect several results leading us to the proof of (9.1). Let us start by relating
the evaluation at the identity with the some integral expression. It extends the statement of Lemma
8.1.1.

Lemma 9.4.4. Let G be a unimodular locally compact group and f , g ∈ L2(G). Then f ∗ g exists and
defines an element in (L2 ∩ C0)(G). It satisfies ∥f ∗ g∥∞ ≤ ∥f ∥2∥g∥2 and ∥f ∗ g∥2 ≤ ∥f ∥2∥g∥2 and
(f ∗ f ∗)(e) = ∥f ∥22.

Proof. Since A is unimodular, Lemma 8.1.1 says that the convolution f ∗ g is well-defined and con-
tinuous. Recall that (f ∗ g)(x) = ⟨f ,Lxg∗⟩ for every x ∈ G. The Cauchy-Schwarz inequality and
unimodularity show that

∥f ∗ g∥∞ = sup
x∈G

∣⟨f ,Lxg∗⟩∣ ≤ sup
x∈G

∥f ∥2∥Lxg
∗∥2 = ∥f ∥2∥g∥2 .

If (fn)n and (gn)n are sequences in Cc(G) converging in L2(G) to f and g, respectively, then fn ∗ gn ∈
Cc(G) converges uniformly to f ∗ g, showing that f ∗ g ∈ C0(A).

Next, we obtain that

∥f ∗ g∥22 = ∫
G

∣f ∗ g(x)∣2dx

= ∫
G

∣∫
G

f (y)g(y−1x)dy ∣2dx

≤ ∫
G

∫
G

∣f (y)g(y−1x)∣2dydx

= ∫
G

∫
G

∣f (y)g(x)∣2dxdy

= ∥f ∥22∥g∥2 .

We finally obtain that

(f ∗ f ∗)(e) = ∫
A

f (x)f ∗(x−1)dx = ∫
A

∣f (x)∣2dx = ∥f ∥22 ,

finishing the proof of the lemma.

The next lemma controls, in which function spaces certain convolution products lie.

Lemma 9.4.5. Let A be a locally compact abelian group.

• L1(A) ∗Cc(A) ⊂ C0(A)

• λ(C∗A)(Cc(A) ∗Cc(A)) ⊂ L2(A) ∩C∗
0(A).

Further, if f ∈ C∗(A) and g, h ∈ Cc(A), then F(λ(f )(g ∗ h)) = f̂ ĝĥ.

Proof. Let us prove that f ∗g ∈ C0(A) if f ∈ L1(A) and g ∈ Cc(A). To this end let (fn)n be a sequence
in Cc(A) converging to f in L1(A). Then fn ∗ g ∈ Cc(A) and

∣(f ∗ g − fn ∗ g)(x)∣ = ∣(f − fn) ∗ g(x)∣ ≤ ∥f − fn∥1∥g∥∞ → 0 .
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So fn ∗ g → f ∗ g uniformly. This shows that L1(A) ∗Cc(A) ⊂ Cc(A).
Let now f ∈ C∗(A) and g, h ∈ Cc(A). If is clear that λ(f )(g ∗ h) ∈ L2(A). Let (fn)n be a sequence

in L1(A) approximating f in the C∗-norm. Then λ(fn)(g ∗ h) = fn ∗ g ∗ h ∈ (L1 ∩C0)(A) for all n ∈ N.
We show that (fn ∗ g ∗ h)n converges to λ(f )(g ∗ h) in C0(A) and F(fn ∗ g ∗ h)n converges to f̂ ĝĥ in
C0(Â). Uniform convergence in C0(A) follows from Lemma 9.4.4 via the estimate

∥λ(f )(g ∗ h) − λ(fn)(g ∗ h)∥∞ = ∥λ(f − fn)(g ∗ h)∥∞
≤ ∥λ(f − fn)g∥2∥h∥2
≤ ∥λ(f − fn)∥C∗(A)∥g∥2∥h∥2
→ 0 .

Further, the fact that f̂n converges uniformly to f̂ and the identity F(fn ∗ g ∗ h) = f̂nĝĥ imply that
F(λ(f )(h ∗ g)) = f̂ ĝĥ. This finishes the proof of the lemma.

The next lemmas describes further instances in which a Dirac net provides an approximate identity
of several operator algebras. The first lemma can be considered as a generalisation of Lemma 6.2.4,
which treats the case of L1(G) for a locally compact group G.

Lemma 9.4.6. Let G be a locally compact group and (fU)U a Dirac net for G. Then (fU)U is an
approximate identity for C∗(G) and for the convolution action on Cc(G).

Proof. By Lemma 6.2.4, we have an approximate identity (fU)U of L1(G). Since L1(G) ⊂ C∗(G) is
dense and ∥fU∥C∗(G) ≤ ∥fU∥1 ≤ 1 for all U, we find that (fU)U is an approximate identity for C∗(G).

Since convolution with fU acts as a contraction on C0(G) and (fU ∗ g)∗ = g∗ ∗ f ∗U it suffices to
prove that fU ∗ g → g uniformly for all g ∈ Cc(A). If x ∈ G and U ⊂ G is an identity neighbourhood
such that ∣g(y−1x) − g(x)∣ for all y ∈ U, then

(fU ∗ g − g)(x) = ∣∫
A

fU(y)g(y−1x) − g(x)dx ∣ ≤ ∫
A

∣fU(y)(g(y−1x) − g(x))∣dx ≤ ε∫
G

fU(y)dy = ε .

Since g is uniformly continuous by Lemma 4.1.2, this shows fu ∗ g → g uniformly.

Lemma 9.4.7. Let A be a locally compact abelian group and let (fU)U be a Dirac net in Cc(A). Then
(fU)U acting by convolution on C∗

0(A) is an approximate identity. Further, (f̂U)U converges uniformly
on compact subsets to the constant function 1 on Â.

Proof. Let g ∈ C∗
0(A). Then Lemma 9.4.6 says that fU ∗ g → g in the norm of C0(A). Further,

f̂U ∗ g = f̂U ĝ → ĝ in the norm of C0(Â) ≅ C∗(A) by Lemma 9.4.6. This shows that (fU)U is an
approximate identity for C∗

0(A).
Let C ⊂ Â be a compact subset and let g ∈ Cc(Â) be a some function such that g∣C ≡ 1. Then

f̂Ug → g in C0(Â) by Lemma 9.4.6, showing that f̂U → 1 uniformly on C.

We arrive now at our main approximation result.

Lemma 9.4.8. Let A be a locally compact abelian groups. Let ϕ ∈ Cc(Â) be real valued and ε > 0.
Then there are f1, f2 ∈ (L2 ∩C∗

0)(A) such that

• f̂1, f̂2 are real valued functions with support contained in supp(ϕ),

• f̂1 ≤ ϕ ≤ f̂2 and ∥f̂2 − f̂1∥Â < ε, and
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• 0 ≤ f2(1) − f1(1) < ε.

Proof. Put K = supp(ϕ) and let 1 > δ > 0. By Lemma 9.4.7, there is a function gδ ∈ Cc(A) such that√
1 − δ ≤ ∣ĝδ ∣ ≤

√
1 + δ on K. Then hδ = gδ ∗ g∗δ satisfies ĥδ = ∣gδ ∣2 and hence 1 − δ ≤ ĥδ ∣K ≤ 1 + δ. We

can also fix some positive multiple of a Dirac function g ∈ C(A) such that h = g ∗ g∗ satisfies h∣K ≥ 1.
Take f ∈ C∗(A) such that f̂ = ϕ and put

f1 = λ(f )(hδ − δh) f2 = λ(f )(hδ + δh) .

By Lemma 9.4.5, we have f1, f2 ∈ (L2 ∩C0)(A). Further, this lemma says that

f̂1(χ) = f̂ (χ)(ĥδ(χ) − δĥ(χ)) ≤ ϕ(χ) ≤ f̂2(χ) .

Further, supp(f̂i) ⊂ supp(ϕ) for i ∈ {1,2} again using Lemma 9.4.5. The approximation properties of
the lemma’s statement follow by choosing δ small enough.

We show that some positivity that would be implied by (9.1) can indeed be proved.

Lemma 9.4.9. Let A be a locally compact abelian group and f ∈ C∗
0(A). If f̂ is real-valued, then f (e)

is real. If f̂ ≥ 0, then f (e) ≥ 0.

Proof. First assume that f̂ is real-valued. Then f̂ = f̂ = f̂ ∗, showing that f = f ∗. So f (e) = f ∗(e) =
f (e).

Now assume that f̂ ≥ 0. The composition with ∶ C0(Â)→ C0(Â) and the identification C0(A) ≅
C∗(A) provides us with a non-negative element f ′ ∈ C∗(A) such that f ∗ h = λ(f ′)h for all h ∈ Cc(A).
Let g ∈ C∗(A) be non-negative such that g2 = f ′. We find a sequence (gn)n of self-adjoint elements
in L1(A) such that gn converges to g in the C∗-norm. For any h ∈ Cc(A) we have λ(gn)h → λ(g)h
in L2(A) and hence (λ(gn)h) ∗ (λ(gn)h)∗ → λ(g)h ∗ (λ(g)h)∗ uniformly by Lemma 9.4.4. Using
commutativity of C∗(A), which is the content of Theorem 6.6.3, we obtain in the topology of uniform
convergence

λ(g)h ∗ (λ(g)h)∗ = limλ(gn)h ∗ (λ(gn)h)∗

= limgn ∗ h ∗ g∗n ∗ h∗

= limgn ∗ gn ∗ h ∗ h
= limλ(gn ∗ gn)(h ∗ h)
= λ(g2)(h ∗ h)
= λ(f ′)(h ∗ h)
= f ∗ h ∗ h .

By Lemma 9.4.4 this implies that

(f ∗ h ∗ h)(e) = (λ(g)h ∗ (λ(g)h)∗)(e) = ∥λ(g)h∥22 ≥ 0 .

Letting h ∗ h run through a Dirac net in Cc(A), Lemma 9.4.6 implies that f (e) ≥ 0.

We are now ready to define prove the formula (9.1) defines a Haar measure on Â for a locally
compact abelian group A.
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Lemma 9.4.10. Let A be a locally compact abelian group and ϕ ∈ Cc(Â) be a real-valued function.
Then

sup{f (e) ∣ f ∈ C∗
0(A), f̂ ≤ ϕ} = inf{f (e) ∣ f ∈ C∗

0(A), f̂ ≥ ϕ} .

Proof. Lemma 9.4.9 says that if f , g ∈ Cc(Â) satisfy f̂ ≤ ϕ ≤ ĝ, then ĝ − f̂ = ĝ − f ≥ 0. So

sup{f (e) ∣ f ∈ C∗
0(A), f̂ ≤ ϕ} ≤ inf{f (e) ∣ f ∈ C∗

0(A), f̂ ≥ ϕ} .
Lemma 9.4.8 then shows equality.

Proposition 9.4.11. Let A be a locally compact abelian group. Then I ∶ Cc(Â)→ C defined by

I(ϕ) = sup{f (e) ∣ f ∈ C∗
0(A), f̂ ≤ Reϕ} + i sup{f (e) ∣ f ∈ C∗

0(A), f̂ ≤ Imϕ}
is a Haar integral on Â.

Proof. Linearity of I follows from its definition. Further, I is positive, since 0Â ≤ ϕ for all positive
functions ϕ ∈ Cc(Â) and 0̂A = 0Â. Also, I is non-zero by Lemma 9.4.10. So it suffices to prove
invariance of the expression sup{f (e) ∣ f ∈ C∗

0(A), f̂ ≤ ϕ} for real valued ϕ ∈ Cc(Â). To this end let
χ ∈ Â. Then Lχf̂ = χ̂f for all f ∈ Cc(A). This shows that

sup{f (e) ∣ f ∈ C∗
0(A), f̂ ≤ Lχϕ} = sup{f (e) ∣ f ∈ C∗

0(A),Lχf̂ ≤ ϕ}
= sup{(χf )(e) ∣ f ∈ C∗

0(A), f̂ ≤ ϕ}
= sup{f (e) ∣ f ∈ C∗

0(A), f̂ ≤ ϕ} .
This finishes the proof of the proposition.

Remark 9.4.12. The Haar integral on Â provided by Proposition 9.4.11 depends on the choice of a
Haar measure on A. If µ is a fixed Haar measure on A and c > 0, then for a real valued function
ϕ ∈ Cc(Â) we have

Iµ(ϕ) = sup{f (1) ∣ f ∈ C∗
0(A),Fµ(f ) ≤ Reϕ}

= sup{cf (1) ∣ f ∈ C∗
0(A),Fµ(cf ) ≤ Reϕ}

= c sup{f (1) ∣ f ∈ C∗
0(A),Fcµ(f ) ≤ Reϕ}

= cIcµ(ϕ) .

So Icµ = 1c Iµ.

Definition 9.4.13. Let A be a locally compact abelian group with a fixed Haar measure µ. Then the
Haar measure on Â constructed in Proposition 9.4.11 is called the Plancherel measure on Â associated
with µ.

Notation 9.4.14. From now on integration on the Pontryagin dual of a locally compact abelian group
A will always be with respect to the Plancherel measure associated with a fixed Haar measure on A.

Remark 9.4.15. Let A be a locally compact abelian group. By construction, the Plancherel measure
on Â satisfies

∫
Â

f̂ (χ)dχ = f (e)

for all f ∈ C∗
0(A) such that f̂ ∈ Cc(Â). We will see in Theorem 9.5.11, that the second condition can

be relaxed to f̂ ∈ L1(Â), which is optimal.
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9.5 The Pontryagin dual

The aim of this section to prove a natural isomorphism of A with its double dual ˆ̂A for all locally
compact abelian groups A. Let us start by providing the natural map which provides this isomorphism.

Lemma 9.5.1. Let A be a locally compact abelian group. For every x ∈ A, the map δx ∶ Â → S1

defined by δx(χ) = χ(x) is a continuous character of Â. The map δ ∶ x ↦ δx is a continuous group

homomorphism from A to ˆ̂A.

Proof. Let us first show that for every x ∈ A the map δx is a continuous character of Â. To this end
let χ1, χ2 ∈ Â. Then

δx(χ1χ2) = (χ1χ2)(x)
= χ1(x)χ2(x)
= δx(χ1)δx(χ2) .

This shows that δx is a character of Â. Let now (χi)i be a net in Â converging to χ ∈ Â. Then
uniform convergence on compact subsets of A (Lemma 9.1.3) implies in particular χi(x)→ χ(x). So
δx(χi) → δx(χ). This proves that δx is continuous. Up to now we showed that δ is a well-defined

map A→ ˆ̂A.
Let us show that δ is a continuous group homomorphism. To this end let x, y ∈ A and χ ∈ Â. Then

(δxy)(χ) = χ(xy)
= χ(x)χ(y)
= δx(χ)δy(χ)
= δx(χ)δy(χ) .

This shows that δ is a group homomorphism. In order to show its continuity, we let (xi)i be a net in A
converging to x ∈ A. Let C ⊂ Â be a compact subset. We have δxi (χ)→ δx(χ) for all χ ∈ C and since
C is compact and all δxi are continuous, it follows that δxi → δx uniformly on C. This shows δxi → δx

in ˆ̂A thanks to Lemma 9.1.3.

Definition 9.5.2. Let A be a locally compact abelian group. The map δ ∶ A → ˆ̂A defined by δx(χ) =
χ(x) for all x ∈ A and all χ ∈ Â is called the Pontryagin map.

The Pontryagin map allows us to express the relation between Fourier transform and left-translation
action in a convenient way.

Lemma 9.5.3. Let A be a locally compact abelian group x ∈ A and f ∈ C∗(A). Then F(Lx f ) = δx f̂ .

Proof. Let us first assume that f ∈ L1(A). Then

F(Lx f )(χ) = ∫
A

f (x−1y)χ(y)dy = ∫
A

f (y)χ(xy)dy = (δx f̂ )(χ) ,

for all χ ∈ Â shows that F(Lx f ) = δx f̂ indeed. The lemma follows now by density of L1(A) ⊂ C∗(A)
and continuity of the Fourier transform.
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We can right away see that the Pontryagin map is injective. This is the content of the following
proposition.

Lemma 9.5.4. Let A be a locally compact abelian group. Then the Pontryagin map of A is injective.

Proof. Let x ∈ A such that δx = 1Â. Then F(Lxg) = δx ĝ = ĝ by Lemma 9.5.3 and hence Lxg = g for
all g ∈ L1(A). This shows x = e.

In order to prove that the Pontryagin map is surjective, we are going to prove that it is closed and
has a dense range. The next lemma provides us with a useful criterion for closedness.

Lemma 9.5.5. Let ϕ ∶ X → Y be a continuous map between locally compact spaces. Assume that ϕ
is proper, that is ϕ−1(K) is compact for every compact subset K ⊂ Y . Then ϕ is closed.

Proof. Let (yi)i be a net in imϕ converging to y ∈ Y . Let xi be a preimage for yi for every i . Since Y
is locally compact, there is a compact neighbourhood K of y and we may assume that yi ∈ K for all i .
Since ϕ−1(K) is compact, we may replace (xi)i by a subnet and assume that xi → x ∈ K converges.
Then y = limi y = limi ϕ(xi) = ϕ(x) follows from continuity of ϕ and proves that y ∈ imϕ. This finishes
the proof of the lemma.

Let us fix a an inversion formula for the Pontryagin map, which holds à priori for a restricted class
of functions.

Lemma 9.5.6. Let A be a locally compact abelian group and f ∈ C∗
0(A) such that f̂ ∈ Cc(Â). Then

f (x) = ˆ̂f (δx−1) for every x ∈ A.

Proof. Thanks to Theorem 9.5.11 and Lemma 9.5.3, we have

f (x) = (Lx−1f )(e) = ∫
Â

F(Lx−1f )(χ)dχ = ∫
Â

δx−1(χ)f̂ (χ)dχ = ˆ̂f (δx−1) .

The next lemma will allow us to make use of the inversion formula by means of approximation.

Lemma 9.5.7. Let A be a locally compact abelian group. Then both Cc(A) ⊂ C∗
0(A) is dense and

Cc(Â) ∩ {f̂ ∣ f ∈ (L2 ∩C∗
0)(A)} ⊂ C∗

0(Â) is dense.

Proof. Since (L1 ∩ C0)(A) is dense in C∗
0(A), it suffices to show that Cc(A) is dense in the former

for the norm ∥ ⋅ ∥∗0. Let f ∈ (L1 ∩ C0)(A). For n ∈ N let Kn ⊂ A be a compact subset such that
∣f ∣A∖Kn ∣ ≤ 1/n. Let gn ∈ Cc(A) be functions such that 0 ≤ gn ≤ 1 and gn∣Kn ≡ 1. Then gnf → f

uniformly and gnf → f in ∥ ⋅∥1. So also gnf → f in ∥ ⋅∥C∗(A). This shows that Cc(A) ⊂ C∗
0(A) is dense.

Now it also follows that Cc(Â) ∩ {f̂ ∣ f ∈ (L2 ∩C∗
0)(A)} is dense, since Cc(Â) ⊂ C∗

0(Â) is dense by
the first part of the lemma, and Cc(Â) ∩ {f̂ ∣ f ∈ (L2 ∩C∗

0)(A)} ⊂ Cc(Â) is dense in the ∥ ⋅ ∥∗0 norm by
Lemma 9.4.8. This finishes the proof of the lemma.

Theorem 9.5.8 (Pontryagin duality). Let A be a locally compact abelian group. Then the Pontrya-
gin map δ ∶ A→ ˆ̂A is an isomorphism of topological groups.

Proof. By Lemmas 9.5.1 and 9.5.4, we know already that δ is injective and continuous group homo-
morphism. So it remains to show that it is closed and surjective.
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Let us start by showing that δ is proper, which together with Lemma 9.5.5 will show closedness
of δ. Let K ⊂ ˆ̂A be a compact subset. Applying Lemma 9.4.8 to some positive function in Cc( ˆ̂A)
that is constantly equal to 1 on K, we obtain some ϕ ∈ C∗

0(Â) such that ϕ̂ is positive and ϕ̂∣K ≥ 1.
By Lemma 9.5.7 there is some element ψ ∈ Cc(Â) such that ∥ϕ − ψ∥∗0 < 1/2 and ψ is the Fourier
transform of some element f ∈ C∗

0(A). We fix the compact set C = {x ∈ A ∣ ∣f (x)∣ > 1/2}. If δx ∈ K
for some x ∈ A, then Lemma 9.5.6 implies that

∣f (x−1)∣ = ∣ ˆ̂f (δx)∣ = ∣ψ̂(δx)∣ > ϕ̂(δx) −
1

2
≥ 1

2
.

This shows that x ∈ C−1 and thus δ is proper.
Let us next show that the image of δ is dense. For a contradiction, we assume that there is some

non-empty open subset U ⊂ ˆ̂A such that U ∩ im δ = ∅. By Lemma 9.4.8 applied to any function in
Cc( ˆ̂A) whose support lies in U, we obtain a non-zero element ϕ ∈ C∗

0(Â) such that ϕ̂ is supported in
U. By Lemma 9.5.7 there is a sequence (ϕn)n in Cc(Â) such that ϕn → ϕ and such that ϕn = f̂n for
some fn ∈ C∗

0(A). Lemma 9.5.6 applies together with the fact that images of compact sets under δ

are compact to show that fn(x) = ˆ̂f n(δx−1) = ϕ̂n(δx−1) → ϕ̂(δx−1) = 0 uniformly. So fn → 0 in C0(A).
Further, f̂n = ϕn → ϕ in C0(Â), meaning that (fn)n is a Cauchy sequence in C∗

0(A). Its limit is 0,
so that ϕ = 0 follows. This contradicts the choice of ϕ and shows that δ has a dense image. This
finishes the proof of the theorem.

We finish this section by providing a general inversion formula, extending the one obtained in
Lemma 9.5.6.

Lemma 9.5.9. Let A be locally compact abelian group. Then F ∶ (L1 ∩C0)(A)→ C0(Â) has image in
C∗
0(Â) and extends to an isomorphism of Banach *-algebras F ∶ C∗

0(A) → C∗
0(Â). Its inverse satisfies

(F−1ϕ)(x) = ϕ̂(δx−1).

Proof. It is clear that F is a *-homomorphism from C∗(A) to C0(Â). We first prove that it restricts
to a surjective isometry between C∗

0(A) and C∗
0(Â) with the inverse map as stated in the lemma.

Let B = {f ∈ C∗
0(A) ∣ f̂ ∈ Cc(Â)}. By Lemma 9.5.6 and the Pontryagin Duality Theorem 9.5.8, we

have for f ∈ B that

∥f ∥∗0 = max{∥f̂ ∥Â, ∥f ∥A}
= max{∥f̂ ∥Â, ∥f̂ ∥ ˆ̂A
= ∥F(f )∥∗0 .

So F extends to an isometry from B to a closed subspace of C∗
0(Â). By Lemma 9.5.7, we have

B = C∗
0(A) and F(C∗

0(A)) ⊂ C∗
0(Â) is dense. So F ∶ C∗

0(A)→ C∗
0(Â) is a surjective isometry.

By Lemma 9.5.6, an inverse for F on B is given by the composition

C∗
0(Â)

FÂÐ→ C∗
0( ˆ̂A) δÐ→ C∗

0(A)
A∋x↦x−1Ð→ C∗

0(A) .

By continuity, it follows that this composition is the inverse of F , providing the formula in the state-
ment. This finishes the proof of the lemma.

Theorem 9.5.10 (Inversion formula). Let A be a locally compact abelian group and f ∈ L1(A) auch
that f̂ ∈ L1(Â). Then f ∈ C0(A) and

f (x) = ˆ̂f (δx−1)
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for all x ∈ A.

Proof. We have f̂ ∈ (L1 ∩ C0)(Â) ⊂ C∗
0(Â). So (F−1f̂ ) ∈ C∗

0(A) is well-defined and equals f due to
injectivity of the Fourier transform. We conclude that

f (x) = (F−1f̂ )(x) = ˆ̂f (δx−1)

for all x ∈ A.

The next theorem describes the relation between the Plancherel measure and evaluation at the
identity in the most general context we are going to use. This was our aim, stated in equation (9.1)
of Section 9.4.

Theorem 9.5.11. Let A be a locally compact abelian group and f ∈ C∗
0(A) such that f̂ ∈ L1(Â). Then

∫
Â

f̂ (χ)dχ = f (e) .

Proof. We observe that f̂ ∈ (L1 ∩ C0)(Â) by assumption. Let (ϕn)n be a sequence in Cc(Â) approx-
imating f̂ . By Lemma 9.5.9, the functions fn = F−1(ϕn) are well-defined elements of C∗

0(A) and
approximate f in C∗

0(A). It follows by Remark 9.4.15 that

f (e) = lim fn(e) = lim∫
Â

f̂n(χ)dχ = lim∫
Â

ϕn(χ)dχ = ∫
Â

f̂ (χ)dχ .

This is what we had to show.

9.6 The Plancherel theorem

We already saw in Lemma 9.5.9 the the Fourier transform induces isomorphisms between several
functional analytic objects attached to a locally compact abelian group A and its Pontryagin dual Â.
In this section, we show that it also induces an isomorphism in L2.

Theorem 9.6.1 (Plancherel theorem). Let A be a locally compact abelian group. Then the Fourier
transform restricted to (L1 ∩ L2)(A) takes values in (C0 ∩ L2)(Â) and extends to a unitary operator
F ∶ L2(A)→ L2(Â).

Proof. Let f ∈ (L1 ∩ L2)(A). Then f ∗ f ∗ ∈ (L1 ∩C0)(A) by Lemma 9.4.4 and (f ∗ f ∗)(e) = ∥f
2
2. Further, F(f ∗ f ∗) = ∣f̂ ∣2 is a non-negative function. If ϕ ∈ Cc(Â) satisfies 0 ≤ ϕ ≤ F(f ∗ f ∗), then
Lemma 9.4.10 implies that

∫
Â

ϕ(χ)dχ = inf{g(1) ∣ g ∈ C∗
c(A), ĝ ≥ ϕ} ≤ (f ∗ f ∗)(e) = ∥f ∥22 <∞ .
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So F(f ∗ f ∗) ∈ L1(Â) and Theorem 9.5.10 implies that

∥f ∥22 = (f ∗ f ∗)(e)
= (F ○F)(f ∗ f ∗)(δe)
= F(∣f̂ ∣2)(δe)

= ∫
Â

∣f̂ ∣2(χ)δe(χ)dχ

= ∫
Â

∣f̂ ∣2(χ)dχ

= ∥f̂ ∥22 .

Since Cc(A) ⊂ (L1∩L2)(A) ⊂ L2(A) is dense, the Fourier transform extends to an isometry F ∶ L2(A)→
L2(Â). By Lemma 9.4.8, its image contains a dense subset of Cc(Â). Hence it is surjective.

Proposition 9.6.2. Let f , g ∈ (L1∩L2)(A). Then f ∗g ∈ L1(A) and F(f ∗g) ∈ L1(A) and the inversion
formula applies to f ∗ g.

Proof. Since L1(A) is an algebra under the convolution product, we have f ∗ g ∈ L1(A). Further,
the Plancherel Theorem 9.6.1 says that f̂ , ĝ ∈ L2(Â). So F(f ∗ g) = f̂ ĝ ∈ L1(A) follows by the
Cauchy-Schwarz inequality. Now Theorem 9.5.10 says that the inversion formula applies to f ∗ g.

Theorem 9.6.3. Let A be a locally compact abelian group and F ∶ L2(A) → L2(Â) the extension of
the Fourier transform. Then AdF ∶ C∗(A) → C0(Â) is the Fourier transform on C∗(A). Further, we
obtain an isomorphism AdF ∶ L(A)→ L∞(Â).

Proof. By the Plancherel Theorem 9.6.1, the Fourier transform defines a unitary operator F ∶ L2(A)→
L2(Â). For f ∈ Cc(A) ⊂ C∗(A) and g ∈ Cc(A) ⊂ L2(A), we have

Fλ(f )g = F(f ∗ g) = f̂ Fg .

This shows that (AdF)(λ(f )) = f̂ , where the latter acts by pointwise multiplication on L2(Â). So
AdF agrees with the Fourier transform on the dense subalgebra Cc(A) ⊂ Cstar(A). This implies the
first statement of the theorem.

Since AdF ∶ C∗(A)→ C0(Â) is an isomorphism, we also obtain an isomorphism AdF ∶ C∗(A)SOT →
C0(Â)

SOT
. By Theorem 6.5.5, we have C∗(A)SOT = L(G). Further, the fact that L∞(Â) lies in the

strong closure of C0(Â) can be seen by approximating first indicator functions of compact subsets,
then of measurable subsets and finally arbitrary functions in L∞(Â). The fact that the strong closure
of C0(Â) equals L∞(Â) then follows from the fact that the latter is equal to its commutant L∞(Â)′
and the bicommutant theorem 6.5.2. This finishes the proof of the theorem.
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