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1 Introduction

The aim of talks C3 and C4 is to give a proof of the following theorem.

Theorem 1 ([CP13]). Let G be a simple non-compact Lie group with property (T) and trivial centre
and let H be a product of simple Howe-Moore groups. Let Λ be an irreducible lattice in G ×H.

Then every extremal character τ ∶ Λ → C is either almost periodic or τ = δe is the left-regular
character.

In lecture C3 we saw that it suffice to show the following von Neumann algebraic reformulation of
Theorem 1.

Theorem 2 (Theorem B of [CP13]). Let G be a simple non-compact Lie group with property (T)
and trivial centre. Assume that Λ is a countable dense subgroup which contains and commensurates
a lattice Γ of G and such that Λ//Γ is a product of simple groups with the Howe-Moore property.

If π ∶ Λ→ U(M) is a finite factor representation of Λ such that π(Λ)′′ =M , then

• either M is finite dimensional or

• π extends to an isomorphism L(Λ) →M .

Actually, in the situation of Theorem 2, we already showed thatM is finite dimensional if we assume
that π(Γ)′′ is amenable. It hence remains to prove the following statement.

Theorem 3. Let G be a simple non-compact Lie group with property (T) and trivial centre. Assume
that Λ is a countable dense subgroup which contains and commensurates a lattice Γ of G.

Assume that π ∶ Λ → U(M) is a finite factor representation of Λ such that π(Λ)′′ =M , but π does
not extend to an isomorphism L(Λ) →M . Then π(Γ)′′ is amenable.

Note that in this lecture we don’t make use of the assumption that Λ//Γ is a product of simple
groups with the Howe-Moore property.

1last modified April 9, 2014
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2 Preparations

Non-degenerate representations. We say that a representation π ∶ Υ → U(M) of a discrete
group into a von Neumann algebra is non-degenerate if M = π(Υ)′′.
Poisson boundary. Let us recall that the Poisson boundary of G is the quotient G/P of G by a
minimal parabolic subgroup. We denote by G σ↷ (B,η) the non-singular action on G/P with respect
to the measure class induce by the Haar measure of G. The only properties of G ↷ B that we will
exploit during this lecture are amenability and contractivity. Let us start by explaining contractive
actions.

Contractive actions. Let G σ↷ (B,η) be a non-singular action of a discrete group. Then G ↷ B
is called contractive if for all measurable A ⊂ B we have supg∈G µ(gA) ∈ {0,1}. Contractive actions
have remarkable rigidity properties, which are explained in Section 4.

Amenability of the noncommutative Poisson boundary. We will not explain amenability of
G

σ↷ B, but rather state one of its consequences. Given a non-degenerate representation π ∶ Γ → N
into a tracial von Neumann algebra, we introduce the algebra of Γ-equivariant measurable functions
from B into B(L2(N)).

BN = {σg ⊗ Jπ(g)J ∣ g ∈ Γ}′ ∩ L∞(B)⊗B(L2(N)) .

Here σg ∈ U(L2(B,η)) denote the unitary operator defined by the action of g on (G,η). Moreover,
J is defined by the formula Jx∗Jâ = âx for all a, x ∈ N . This von Neumann algebra is, for reasons
that we cannot explain during this lecture, called the noncommutative Poisson boundary of π. As a
consequence of the amenability of G↷ B, it follows that BN is an amenable von Neumann algebra
as [Zim77, Theorem 5.1] shows.

G-algebras. Let Λ ≤ G be a countable dense subgroup of a locally compact group G. Let Λ ↷M
be an action on a tracial von Neumann algebra. The G-algebra of M is the algebra of all elements
x ∈M such that whenever (λn)n is a sequence in Λ that converges to e in G, then λnx→ x strongly.
If π ∶ Λ → U(M) is a representation of Λ in M , then the G-algebra of π is the G-algebra for the
action x↦ Ad(π(λ))(x). The G-algebra of an action Λ↷M is the largest von Neumann subalgebra
of M on which we can extend the action of Λ to a continuous action of G.

Notation. If not stated differently, we use the notion of the introduction and the preparatory
section throughout these notes.

3 Proof of the main theorem

In this section we give the proof of our main Theorem 3. We start by stating three results, which
are the main ingredients of its proof. Their proofs in turn are postponed to later sections. The
statements of Proposition 4 and Theorems 5 and 6 are chosen in such a way that the principal
ingredients of the proof of the main theorem become clear.

Proposition 4 (Proposition 5.1 in [CP13]). Let G be a second countable locally compact group and
with a lattice Γ ≤ G and a countable dense subgroup Λ ≤ G that contains and commensurates Γ. Let
π ∶ Λ→ U(M) be a non-degenerate finite factor representation and put N = π(Γ)′′. Then

{σγ ⊗ (Jπ(γ)J) ∣γ ∈ Γ}′ ∩ L∞(B)⊗B(L2(N, τ))
= {σλ ⊗ (JEN(π(λ))J) ∣λ ∈ Λ}′ ∩ L∞(B)⊗B(L2(N, τ))
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The proof of Proposition 4 relies on a rigidity phenomenon related to contractive actions. In
Section 4, we give a brief outline of the relevant results. However, for a full proof we refer to [CP13,
Sections 3 and 5].

Theorem 5. Let G be a simple non-compact Lie group with trivial centre. Let Λ ≤ G be a countable
dense subgroup. Assume that π ∶ Λ → U(M) is a non-degenerate finite factor representation of Λ.
Then the G-algebra of π equals C1.

This theorem can be considered as a strengthening of Theorem 7 of talk C3, saying that a simple
group with the Howe-Moore property does not have any non-trivial representation into a finite von
Neumann algebra. Indeed, the Howe-Moore property is the main ingredient of the proof of Theorem
5, which is presented in Section 7.

Theorem 6 (Theorem 4.4 in [CP13]). Let G be a simple locally compact group and Λ ≤ G a countable
dense subgroup. Let π ∶ Λ→ U(M) be a non-degenerate finite factor representation and assume that
the G-algebra of π is C1. If π does not extend to an isomorphism L(Λ) → M then for any von
Neumann subalgebra N ⊂M we have

{σλ ⊗ (JEN(π(λ))J) ∣λ ∈ Λ}′ ∩ L∞(B)⊗B(L2(N)) = 1⊗N .

With these means at hand, let us prove our main Theorem 3.

Proof of Theorem 3. Assume that π ∶ Λ → U(M) is a non-degenerate finite factor representation
that does not extend to an isomorphism L(Λ) →M . We noted in Section 2 that the von Neumann
algebra

BN = {σg ⊗ Jπ(g)J ∣ g ∈ Γ}′ ∩ L∞(B)⊗B(L2(N))
is amenable. Since G↷ B is contractive, Proposition 4 implies that

BN = {σλ ⊗ (JEN(π(λ))J) ∣λ ∈ Λ}′ ∩ L∞(B)⊗B(L2(N, τ)) .

By Theorem 5, the G-algebra of M is trivial. Hence we may apply Theorem 6, so as to conclude
that BN = 1⊗N . This shows that N is amenable.

4 Rigidity results for contractive actions

In this section we only briefly state how deduce Proposition 4 from contractivity of the Poisson
boundary. We don’t state the results of [CP13, Section 3] in their full generality.

Let us start by considering classical contractive actions. They posses an interesting approximation
feature explained in the following lemma. Its proof is elementary and can be deduced right away
from the definition of contractive actions.

Lemma 7. Let Γ↷ (B,η) be a contractive non-singular action of a discrete group. Take f ∈ L∞(X)+
and f̃ ∈ L∞(X). Then there is a sequence of elements (gn)n in Γ such that gnf → ∥f∥ strongly and
gnf̃ → c ∈ C.

Recall the noncommutative Poisson boundary associated with a non-degenerate representation
π ∶ Γ→ N into a tracial von Neumann algebra.

BN = {σg ⊗ Jπ(g)J ∣ g ∈ Γ}′ ∩ L∞(B)⊗B(L2(N)) .

Lemma 7 has the following noncommutative analogue.
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Lemma 8. Let Γ be a countable discrete discrete group and let Γ
σ↷ (B,η) be a contractive action

and π ∶ Γ→ U(N) a non-degenerate representation of Γ into a finite von Neumann algebra. Let

BN = {σg ⊗ Jπ(g)J ∣ g ∈ Γ}′ ∩ L∞(B)⊗B(L2(N)) .

Take x ∈ BN , ∥x∥ ≤ 1, f ∈ L∞(B)+ and ε > 0. Then there is a sequence (gn)n in Γ, a sequence
of projections (pn)n in N satisfying τ(pn) > 1 − ε for all n ∈ N and a sequence of elements (yn)n
in N such that (yn)n is uniformly bounded, σgn(f) → ∥f∥ strongly and π(gn)(pnx − yn)π(g−1n ) → 0
strongly.

The analogy between Lemma 7 and Lemma 8 becomes clear if we consider N as a replacement for
the scalars C1. The element x in Lemma 8 corresponding to f̃ in Lemma 7 can be approximated
by “scalars” in a suitable sense.

Using the approximation results of the previous lemma, one can deduce a rigidity result for N -
bimodular maps.

Theorem 9. If 1 ⊗N ⊂ P ⊂ BN is an intermediate von Neumann algebra and Φ ∶ P → BN is a
strongly continuous unital N -bimodular map, then Φ = id.

Idea of the proof. One notes that Φ is N -bimodular and hence Φ∣N = idN . By Lemma 8, it is
possible to approximate arbitrary elements of P by elements of N under large projections. This
allows to conclude that Φ = idP .

From the last theorem, or rather a slight generalisation of it, we can deduce Proposition 4.

Propositon 4 (Recall). Let G be a second countable locally compact group, Γ ≤ G a lattice
and Λ ≤ G a countable dense subgroup that contains and commensurates Γ. Let G ↷ (B,η) be a
contractive non-singular action. Let π ∶ Λ → U(M) be a non-degenerate finite factor representation
and put N = π(Γ)′′. Then

BN = {σλ ⊗ (JEN(π(λ))J) ∣λ ∈ Λ}′ ∩ L∞(B)⊗B(L2(N, τ)) .

Idea of the proof. We consider N -bimodular maps looking like

Ψ ∶ BN → BN ∶ x↦ Ad(σλ ⊗ (JEN(π(λ))J))(x) .

Applying Theorem 9 shows that Ψ = id and hence BN ⊂ {σλ ⊗ (JEN(π(λ))J) ∣λ ∈ Λ}′ ∩
L∞(B)⊗B(L2(N, τ)). In the proof one meets two technical difficulties. First, EN(π(λ)) doesn’t
need to be a unitary. We can remedy this default by using a polar decomposition. Second, the
image of Ψ does not necessarily lie in BN . Here commensurability of Γ ≤ Λ comes into play and one
has to prove a generalisation of Theorem 9 replacing BN by an analogue for finite index subgroups
of Γ.
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5 Triviality of the noncommutative Poisson boundary for non-
regular representations

This section is devoted to the proof of Theorem 6. It is the only part of the proof of our main The-
orem 3 where we use the fact that the representation π ∶ Λ→M does not extend to an isomorphism
L(Λ) →M . Moreover, it demonstrates some useful von Neumann algebra techniques.

Theorem 6 (Recall). Let G be a simple locally compact group and Λ ≤ G be a countable dense
subgroup. Suppose that G↷ Y is an ergodic non-singular action and π ∶ Λ→ U(M) is a finite factor
representation such that M = π(N)′′. Assume that the G-algebra with respect to π is C1 and that π
does not extend to an isomorphism L(Λ) →M . If N ⊂M is a von Neumann algebra then

{σλ ⊗ (JEN(π(λ))J) ∣ g ∈ Λ}′ ∩ L∞(Y )⊗B(L2(N)) = 1⊗N .

Proof of Theorem 6. Let Q = {σλ ⊗(JEN(π(λ))J) ∣λ ∈ Λ}′′. For λ ∈ Λ and O ⊂ G a neighbourhood
of the identity, we let Kλ,O be the ∥ ⋅ ∥2-convex closure of {π(hλh−1) ∣h ∈ Λ ∩ O}. Writing Kλ =
⋂OKλ,O, where the intersection runs over all open neighbourhoods of the identity, we obtain a
non-empty ∥ ⋅ ∥2-closed convex set in M .

Claim: For all λ ∈ Λ, we have τ(π(λ))1 ∈Kλ.
Denote by xλ the unique ∥ ⋅ ∥2-minimum of Kλ. If (λn)n is a sequence in Λ going to e in G, and
O is a neighbourhood of e in G, then π(λn)Kλ,λ−1n Oπ(λ−1n ) = Kλ,O is well defined for big n. Hence
for each neighbourhood O of the identity in G, there is N ∈ N such that for all n ≥ N , the element
π(λn)xλπ(λ−1n ) lies in Kλ,O. Since ∥π(λn)xλπ(λn)∥2 = ∥xλ∥2 for all n ∈ N, any weak cluster point
y of (π(λn)xλπ(λ−1n ))n satisfies ∥y∥2 ≤ ∥xλ∥2. By uniquenss of the ∥ ⋅ ∥2-minimum in Kλ it follows
that y = xλ. We have shown that π(λn)xλπ(λ−1n ) converges weakly to xλ. Using

∥π(λn)xλπ(λ−1n ) − xλ∥2 = ∥π(λn)xλπ(λ−1n )∥2 + ∥xλ∥2 + 2Re⟨π(λn)xλπ(λ−1n ), xλ⟩
= 2∥xλ∥2 + 2Re⟨π(λn)xλπ(λ−1n ), xλ⟩ ,

we infer that π(λn)xλπ(λ−1n ) → xλ in ∥ ⋅ ∥2. This shows that xλ lies in the G-algebra of M , which
equals C1. So xλ = τ(xλ)1. Since τ(π(hλh)) = τ(π(λ)) for all h ∈ Λ, we see that τ is constant on
Kλ, implying that τ(π(λ)) = xλ ∈Kλ.

Claim: σλ ⊗ 1 ∈ Q for all λ ∈ Λ satisfying τ(π(λ)) ≠ 0.
Take λ ∈ Λ such that τ(π(λ)) ≠ 0. Applying id⊗Ad(J), it suffice to show that σλ⊗1 is in the strong
closure of span{σλ ⊗EN(π(λ)) ∣λ ∈ Λ}. We will even show that σλ ⊗ 1 is in the strong closure of
the uniformly bounded set conv{σλ ⊗EN(π(λ)) ∣λ ∈ Λ}. Take ε > 0 and finite families F1 ⊂ L2(Y )
and F2 ⊂ L2(N). Making ε smaller if necessary, we may assume that all ξ1 ∈ F1 satisfy ∥ξ1∥2 ≤ 1.
Moreover, since σλ ⊗ 1 will be approximated by uniformly bounded elements, we can assume that
F2 ⊂ N and ∥ξ2∥∞ ≤ 1 for all ξ2 ∈ F2. Since G acts continuously on Y there is an open neighbourhood
O of the identity in G such that for all g ∈ O and all ξ1 ∈ F the following estimate holds.

∥(σλ − σgλg−1)ξ1∥2 < ε/2 .

By the previous claim, there is a convex combination ∑ni=1 ciπ(hiλh−1i ) such that hi ∈ O for all
i ∈ {1, . . . , n} and

∥τ(π(λ)) −
n

∑
i=1
ciπ(hiλh−1i )∥2 < ε/2 .
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We obtain for all ξ1 ∈ F1, ξ2 ∈ F2 the estimate

∥((σλ ⊗ τ(π(λ))) −
n

∑
i=1
ciσhiλh−1i

⊗EN(π(hiλh−1i )))(ξ1 ⊗ ξ2)∥2

≤ ∥((σλ ⊗ τ(π(λ))) −
n

∑
i=1
ciσλ ⊗EN(π(hiλh−1i )))(ξ1 ⊗ ξ2)∥2

+ ∥(
n

∑
i=1
ciσλ ⊗EN(π(hiλh−1i )) −

n

∑
i=1
ciσhiλh−1i

⊗EN(π(hiλh−1i )))(ξ1 ⊗ ξ2)∥2

= ∥(σλ ⊗ (τ(π(λ)) −
n

∑
i=1
ciEN(π(hiλh−1i )))(ξ1 ⊗ ξ2)∥2

+ ∥
n

∑
i=1
ci((σλ − σhiλh−1i ) ⊗EN(π(hiλh−1i )))(ξ1 ⊗ ξ2)∥2

≤ ∥σλξ1∥2∥τ(π(λ)) −
n

∑
i=1
ciEN(π(hiλh−1i ))∥2∥ξ2∥

+
n

∑
i=1
ci∥(σλ − σhiλh−1i )ξ1∥2∥EN(π(hiλh

−1
i ))ξ2∥2

≤ ∥τ(π(λ)) −
n

∑
i=1
ciπ(hiλh−1i )∥2 +

n

∑
i=1
ci∥(σλ − σhiλh−1i )ξ1∥2

≤ ε/2 +
n

∑
i=1
ciε/2

= ε .

Since simple tensors span L2(Y ) ⊗ L2(N), we see that τ(π(λ))(σλ ⊗ 1) = (σλ ⊗ τ(π(λ))) ∈ Q. Now
τ(π(λ)) ≠ 0, implies that (σλ ⊗ 1) ∈ Q.
Since {λ ∈ Λ ∣ τ(π(λ)) ≠ 0} is conjugation invariant, it generates a normal subgroup N of G. By
assumption on τ , the group N is non-trivial. So the simplicity assumption on G shows that N is
dense. So there is a subgroup Λ0 ≤ Λ that is dense in G and such that σλ ⊗ 1 ∈ Q for all λ ∈ Λ0.
Hence, continuity of G ↷ L∞(Y ) implies σg ⊗ 1 ∈ Q for all g ∈ G. In particular, σλ ⊗ 1 ∈ Q for all
λ ∈ Λ. So also 1⊗ JEN(π(λ))J ∈ Q for all λ ∈ Λ.

Ergodicity of G ↷ L∞(Y ) implies Q′ ∩ L∞(Y )⊗B(L2(N)) ⊂ 1 ⊗ B(L2(N)). Moreover
{EN(π(λ)) ∣λ}′′ = EN(M) = N . So we infer that

Q′ ∩ (1⊗B(L2(N))) = (1⊗B(L2(N))) ∩ (L∞(B)⊗N) = 1⊗N

This finishes the proof.

6 Outer actions

In this section we explain outer automorphisms of von Neumann algebras. This notion is central in
the proof of Theorem 5, which is presented in Section 7.

Definition 10 (Inner automorphisms). Let M be a von Neumann algebra and α ∈ Aut(M). Then
α is called inner if there is a unitary u ∈ U(M) such that α(x) = (Adu)(x) = uxu∗.
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Remark 11. IfM is a factor and α is an inner automorphism, then α = Adu for a unique unitary up
to multiplication by scalars. Indeed, if Adu = Ad v for some unitaries u, v ∈M , then Ad(v∗u) = id
implies v∗u ∈ Z(M) = C1.

Definition 12 (Outer action). Let M be a von Neumann algebra and α ∈ Aut(M). Then α is
outer if whenever there is x ∈M such that for all y ∈M the formula xy = α(y)x holds, then y = 0.

An action G α↷M of a discrete group on a von Neumann algebra is outer if every αg, g ∈ G∖ {e} is
outer.

One can interpret this definition by saying that an outer action is as far as possible from being
implemented by inner automorphisms. The following proposition makes this point of view clear.

Proposition 13. Let α ∈ Aut(M) be an automorhpism of a von Neumann algebra. Then there is
a central projection p ∈ Z(M) such that

• α(p) = p,

• α∣pM is inner and

• α∣(1−p)M is outer.

In particular, every automorphism of a factor is either inner or outer.

Proof. Let p ∈ Z(M) be the maximal α-invariant projection such that α∣pM is inner. We have
to show that α∣(1−p)M is outer. Replacing M by (1 − p)M it hence suffices to show the following
statement.

Claim. Whenever α is an automorphism of M that is not outer, then there is a central α-invariant
projection p ∈ Z(M) such that α∣pM is inner.
Since α is not outer, there is a non-zero element a ∈M such that ax = α(x)a for all x ∈M . Since

a∗ax = a∗α(x)a = xa∗a ,

we see that a∗a ∈ Z(M). If a = v∣a∣ denotes the polar decomposition of a, then for all unitaries
u ∈ U(M) we have

a = α(u)∗au = α(u)∗v∣a∣u = α(u)∗vu∣a∣ .

Since a∗a ∈ Z(M), also v∗v = supp(a∗a) ∈ Z(M). This implies (α(u)∗vu)∗α(u)∗vu = u∗v∗vu = v∗v.
By uniqueness of the polar decomposition of a, it follows that α(u)∗vu = v. Put differently, we have
vu = α(u)v for all u ∈ U(M). Hence vx = α(x)v for all x ∈M .

We show that vv∗ = v∗v. Since v∗v is central, we have vv∗ ≤ v∗v. Now note that α(v∗v) ∈ Z(M)
satisfies

v∗vα(v∗v) = v∗α(v∗v)v = v∗v(v∗v) = v∗v .

So v∗v ≤ α(v∗v). Moreover, since v∗v is central, we have

vα−1(v∗v − vv∗) = (v∗v − vv∗)v = v − v = 0 ,

implying that α(v∗v)(v∗v − vv∗) = 0. Since vv∗ ≤ v∗v ≤ α(v∗v), it follows that

v∗v − vv∗ = α(v∗v)(v∗v − vv∗) = 0 .
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This shows that vv∗ = v∗v ∈ Z(M).
As a byproduct of the last paragraph, we saw that α(v∗v) ≥ v∗v. It follows that αn(v∗v) ≥ αn−1(v∗v)
for all n ≥ 1. So p = v∗v + ∑n≥1(αn(v∗v) − αn−1(v∗v)) is an α-invariant central projection in M .
Moreover, the partial isometry

u = v + ∑
n≥1

αn(v)(αn(v∗v) − αn−1(v∗v))

satisfies u∗u = uu∗ = p. For n ≥ 1 and x ∈M , we obtain the equality

αn(v)x = αn(vα−n(x)) = αn(α−(n−1)(x)v) = α(x)αn(v) ,

showing that ux = α(x)u for all x ∈M . We have shown that α∣pM is inner, completing the proof.

Remark 14. Outerness must be considered as a generalisation of freeness for non-singular actions.
More precisely, if α is an automorphism of an abelian von Neumann algbra A = L∞(X), then α is
outer if and only if the associated automorphism α0 of X is free.

Indeed, assume that α is outer. Let Y = {x ∈X ∣α0(x) = x} and write p = 1Y . Then α(q) = q for all
q ≤ p. So xp = α(x)p = pα(x) for all x ∈ A. It follows that p = 0, or equivalently Y is a negligible set.

If α0 is free, let p be a projection of A such that α is inner on pA. Since pA is abelian, α is trivial
on pA. Take Y ⊂X such that p = 1Y . For almost every x ∈ Y we have α0(x) = x, so Y is negligible.
It follows that p = 0.

7 G-algebras

In this section we prove Theorem 5. The treatment of outer actions in the previous section will
allow us to split up its proof into the case of abelian von Neumann algebras and factors.

The key ingredient in the proof of Theorem 5 is the following proposition.

Proposition 15 (Proposition 4.1 in [CP13]). Let G be a simple non-compact Lie group with trivial
centre. Suppose that Λ ≤ G is a countable dense subgroup. If α ∶ G → Aut(M,τ) is a continuous
trace preserving ergodic action of G on a non-trivial tracial von Neumann algebra M , then the
restriction of α to Λ is outer.

We will argue that in order to prove this proposition, it suffices to consider the two special cases
where M is abelian and where M is a factor.

Proposition 16. Let G be a simple connected non-compact Lie group with trivial centre. Suppose
that Λ ≤ G is a countable dense subgroup. If α ∶ G → Aut(X,µ) is a continuous ergodic probability
measure preserving action of G on a non-trivial probability measure space X, then the restriction of
α to Λ is free.

Proposition 17. Let G be a simple connected non-compact Lie group with trivial centre. Suppose
that Λ ≤ G is a countable dense subgroup. If α ∶ G→ Aut(M,τ) is a continuous ergodic action of G
on a finite factor M , then the restriction of α to Λ is outer.
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Proof that Propositions 16 and 17 imply Proposition 15. Let G α↷ M be given as in the statement
of Proposition 15. Assume that there is g ∈ Λ such that αg is not outer. By Proposition 13 there
is a non-zero central αg-invariant projection p ∈ Z(M) such that αg ∣pM is inner. Since, αg ∣Z(pM)
is trivial, it follows that αg ∣Z(M) is a non-free action. So Proposition 16 shows that Z(M) = C1,
meaning that M is a factor. We can hence apply Proposition 17 so as to obtain a contradiction.
This finishes the proof.

We will not give a proof in the abelian case (Proposition 16). It can be found in [CP12, Section 7].
We concentrate on the factor case instead.

Proof of Proposition 17. Let G α↷M be as in the statement of the proposition. Since M is a factor,
Proposition 13 says that every αg, g ∈ G is either outer or inner. We assume for a contradiction
that the group I = {g ∈ G ∣αg is inner} is non-trivial. For g ∈ I let ug ∈M be some unitary satisfying
αg = Adug. If h ∈ G, then αhgh−1 = αh ○ Adug ○ α−1h = Ad(αh(ug)). So I is normal in G. By
topological simplicity, it follows that I is dense in G.

For g ∈ I and x ∈M , we have

Ad(αg(ug))(x) = αg(ug)xαg(ug)∗ = αg(ugα−1g (x)u∗g) = αg(x) .

By Remark 11, the element ug is unique up to multiplication with elements in S1. So it follows that
αg(ug) ∈ S1ug. Hence αh(ug) ∈ S1ug for all h ∈ ⟨g⟩. By definition of ergodicity of G ↷M we know
that G α↷ L2(M)⊖C1 doesn’t have a fixed vector. As G has the Howe-Moore property, we infer that
⟨g⟩ must be compact. We showed that there is dense subset of G each of whose elements generates
a compact subgroup. This contradicts [Pla68]. So we reached a contradiction with the assumption
that G↷M is not outer.

We can now prove that G-algebras in the setting of Theorem 3 are trivial.

Theorem 5 (Recall) . Let G be a simple non-compact Lie group with trivial centre. Assume that
π ∶ Λ→ U(M) is a non-degenerate finite factor representation of Λ. Then the G-algebra of π equals
C1.

Proof. Let π ∶ Λ → U(M) be a non-degenerate finite factor representation and denote by M0 ⊂ M
the G-algebra of π. Since M is a factor, G ↷ M0 is ergodic. Denote by E ∶ M → M0 the trace
preserving conditional expectation. Then for all x ∈M0 and all λ ∈ Λ, we have

E(π(λ))x = E(π(λ)x) = E(Ad(π(λ)(x)π(λ)) = Ad(π(λ)(x)E(π(λ)) .

By Proposition 15, the action of Λ on M0 is outer, so E(π(g)) = 0. Since spanπ(Λ) is weakly dense
in M , it follows that M0 = 0, which is absurd.
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