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1 Introduction

The aim of talks C3 and C4 is to give a proof of the following theorem.

Theorem 1 ([CP13]). Let G be a simple non-compact Lie group with property (T) and trivial centre
and let H be a product of p-adic Lie groups. Let Λ be an irreducible lattice in G ×H.

Then every extremal character τ ∶ Λ → C is an is either almost periodic or τ = δe is the left-regular
character.

Here a locally compact group G has the Howe-Moore property if any unitary representation of G
either has a fixed vector or it is mixing. Furthermore, a lattice Γ ≤ G1 ×⋯×Gn is called irreducible,
if the projections πi(Γ) ≤ Gi are dense for all i ∈ {1, . . . , n}. Let us mention an important example
of groups satisfying the hypothesis of the previous theorem.

Example 2. The diagonal embedding of PSL(n,Z[1
p]) into PSL(n,R)×PSL(n,Qp) is an irreducible

lattice for all prime numbers p and all n ≥ 2. If n ≥ 3, then PSL(n,R) and PSL(n,Qp) satisfy all
other hypotheses of Theorem 1.

We will deduce Theorem 1 on lattices in G ×H from the next theorem about dense subgroups of
G. Recall that the Schlichting completion of an inclusion Γ ≤ Λ by definition is the closure of the
image Λ ↦ Sym(Λ/Γ) in the topology of pointwise convergence. If Γ is commensurated by Λ, then
the closure of Γ in Λ//Γ is a compact open subgroup.

Theorem 3 (Theorem D of [CP13]). Let G be a simple non-compact Lie group with property (T) and
trivial centre. Assume that Λ is a countable dense subgroup of G which contains and commensurates
a lattice Γ of G and such that the Schlichting completion Λ//Γ is a product of topologically simple
groups with the Howe-Moore property.

Then every extremal character τ ∶ Λ→ C is either almost periodic or τ = δe.

Proof that Theorem 3 implies Theorem 1. Let Λ ≤ G×H be an irreducible lattice as in the statement
of Theorem 1. Since H is a product of p-adic Lie groups, it is totally disconnected. Hence there is
a compact open subgroup U ≤H. Note that every compact open subgroup of H is commensurated
by H. Let Γ = Λ ∩ (G × U). Then Γ is commensurated by Λ. Moreover, using the fact that the
projection of Λ to H is dense in H and the fact that U is compact open in H, the Schlichting
completion Λ//Γ satisfies

Λ//Γ ≅H//U ≅H .
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Denote by π ∶ G ×H → G the projection onto the first factor. Since Λ is irreducible in G ×H it
follows that π(Λ) is dense in G. Furthermore, π(Γ) is discrete in G, since U is compact. It follows
that π(Γ) ≤ π(Λ) ≤ G satisfies all hypotheses of Theorem 3. To conclude the proof, we remark that
by Margulis’s normal subgroup theorem every normal subgroup of Γ has finite index, so that π is
injective on Γ.

Example 4. Let us continue Example 2. Consider the irreducible lattice Λ = PSL(n,Z[1
p]) in

G × H = PSL(n,R) × PSL(n,Qp). Since PSL(n,Zp) is compact open in PSL(n,Qp), we have to
consider Γ = PSL(n,Z[1

p]) ∩ PSL(n,R) × PSL(n,Zp) = PSL(n,Z) in Theorem 3. Indeed, one can
check that PSL(n,Z[1

p])//PSL(n,Z) ≅ PSL(n,Qp) and the latter group is simple and has the Howe-
Moore property.

We present now a von Neumann algebraic version of Theorem 3. This is the statement that we
are going to prove. Thanks to the correspondence between extremal characters on Λ and finite
factor representations of Λ, which was presented in the earlier talk C1, it suffices to show the follow
theorem.

Theorem 5 (Theorem B of [CP13]). Let G be a simple non-compact Lie group with property (T) and
trivial centre. Assume that Λ is a countable dense subgroup of G which contains and commensurates
a lattice Γ of G and such that the Schlichting completion Λ//Γ is a product of topologically simple
groups with the Howe-Moore property.

If π ∶ Λ→ U(M) is a finite factor representation of Λ such that π(Λ)′′ =M , then

• either M is finite dimensional, or

• π extends to an isomorphism L(Λ)→M .

The proof of this theorem splits into two parts. In the next lecture C4, we are going to see that
under the hypothesis of Theorem 5, either π extends to an isomorphism L(Λ) →M or π(Γ)′′ is an
amenable von Neumann algebra. The latter assumption is the starting point of this lecture.

For the proof of Theorem 5 we are going to assume that π(Γ)′′ is amenable. In particular,
π cannot extend to to an isomorphism L(Λ)→M , since Γ is a property (T) group. (See Section 3).

2 Proof of the main theorem

We proceed in a direct way to the proof of Theorem 5 (under the assumption that π(Γ)′′ is
amenable). Three results are going to be used in the proof. They are further explained in Sec-
tion 4 and 3, respectively.

Proposition 6. Let Γ be discrete countable group with property (T) and let π ∶ Γ → M be a non-
degenerate representation into a finite von Neumann algebra. Then M has property (T).

Proposition 7. Let M be a finite von Neumann algebra which is amenable and has property (T).
Then M is discrete.

Theorem 8. Let G be a non-discrete totally disconnected simple group with the Howe-Moore prop-
erty. Then there is no non-trivial continuous homomorphism of G into the unitary group of a finite
von Neumann algebra.
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We give a proof of our main Theorem 5 assuming these two results and prove them afterwards.

Proof of Theorem 5 under the assumption that π(Γ)′′ is amenable. Let π ∶ Λ → U(M) be a finite
factor representation of Λ such that π(Λ)′′ = M and π(Γ)′′ is amenable. Since Γ is a lattice in a
property (T) group, it has property (T) itself. By Proposition 6, it follows that π(Γ)′′ is a finite
amenable von Neumann algbera with property (T). So Proposition 7 shows that π(Γ)′′ is completely
atomic.

Consider the representation π ⊗ πop ∶ Λ → U(L2(M) ⊗ L2(M)), which is defined by (π ⊗ πop)(λ) =
π(λ)⊗Jπ(λ)J . Since π(Γ)′′ is completely atomic, there is a non-zero (π⊗πop)(Γ)-invariant vector
ξ ∈ L2(M)⊗ L2(M). To see this, it suffices to check that if e1, . . . , en denotes an orthonormal basis
of Cn, then ∑n

i=1 ei ⊗ ei is invariant under all operators U ⊗U∗ with U ∈ U(n). Indeed,
n

∑
i=1

Uei ⊗U∗ei =
n

∑
i=1

n

∑
k,l=1

ukiuil ek ⊗ el =
n

∑
k,l=1

δk,l ek ⊗ el =
n

∑
k=1

ek ⊗ ek .

We show that ξ is (π ⊗ πop)(Λ)-invariant. Denote by p the projection onto the closed linear span
of (π ⊗ πop)(Λ)ξ. Since p(π ⊗ πop)(Λ)p = (π ⊗ πop)(Λ)p, it follows that p ∈ (π ⊗ πop)(Λ)′. Define
M̃ = (π⊗πop)(Λ)′′p and note that M̃ ⊂M ⊗M ′ is a finite von Neumann algebra. A sequence (λn)n
in Λ goes to e in Λ//Γ if and only if for every finite index subgroup Γ0 of Γ there is N ∈ N such
that λn ∈ Γ0 for all n ≥ N . It follows that if (λn) is a sequence in Λ that goes to e in Λ//Γ, then
(π ⊗ πop)(λnλ)ξ ∈ (π ⊗ πop)(λΓ)ξ for n big enough. Consequently, (π ⊗ πop)(λn)p → p strongly.
So (π⊗πop)p extends to a strongly continuous representation of Λ//Γ into the finite von Neumann
algebra M̃ . By Theorem 8 we infer that this representation is trivial. In particular,

(π ⊗ πop)(λ)ξ = (π ⊗ πop)(λ)pξ = pξ = ξ

for all λ ∈ Λ. It follows that the von Neumann algebra (π ⊗ πop)(Λ)′′ is not diffuse. So neither is
M = π(Λ)′′. Since M is a factor, it follows that M is finite dimensional.

3 A rigidity vs. amenability result

In this section we show that property (T) and amenability are incompatible not only on the level
of groups but also on the level of von Neumann algebras. In order to illustrate cleanly the strategy
of the proof, we make use of the famous equivalence of amenability and hyperfiniteness of von
Neumann algebras [Con76]. This is absolutely not necessary, but slightly simplifies the argument.

Definition 9 (Property (T) for finite von Neumann algebras). Let M be a finite von Neumann
algebra with faithful tracial state τ . We say that M has property (T), if the following condition
holds. Whenever (Ψn)n is a sequence of unital completely positive and trace preserving maps such
that ∥Ψn(x) − x∥2 → 0 as n→∞ for all x ∈M , then Ψn → id uniformly in ∥ ⋅ ∥2 on (M)1.

Proposition 6 (Recall). Let Γ be discrete countable group with property (T) and let π ∶ Γ →M
be a non-degenerate representation into a finite von Neumann algebra. Then M has property (T).

Proof. Denote by τ a faithful normal trace on M . Let (Ψn)n be a sequence of unital completely
positive maps on M that converges to idM pointwise in ∥ ⋅ ∥2. The functions

ϕn(g) = τ(Ψn(π(g))π(g)∗) = ⟨Ψn ○ π(g)Jπ(g)J1,1⟩L2(M)
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are of positive type. Note that ϕn → 1 pointwise. Since Γ has property (T), it follows that ϕn → 1
uniformly. So

∥Ψn(π(g)) − π(g)∥2
2 = ∥Ψn(π(g))∥2 + ∥π(g)∥2

2 − 2Re⟨Ψn(π(g), π(g)⟩ = 2 − 2Reϕn(g)→ 0

uniformly for all g ∈ Γ. This implies that ∥Ψn(x) − x∥2 → 0 uniformly on the ∥ ⋅ ∥2-closure C of
π((CΓ)L1(Γ),1). By Kaplasky’s density theorem, ⋃n nC =M . So it follows that C contains a ∥ ⋅ ∥∞
open set. We infer that (Ψn)n converges uniformly in ∥ ⋅ ∥2 to idM on (M)1.

Proposition 7 (Recall). Let M be a finite von Neumann algebra which is amenable and has
property (T). Then M is discrete.

Proof. Assume that M is not discrete under the hypothesis of the proposition. Then there is a
central projection p ∈ Z(M) such that pM is diffuse. Since pM is amenable and has property (T),
we may replace 1M by p and assume that M is diffuse. Since M is amenable, there is a sequence
of finite rank completely positive unital maps Ψn ∶M →M such that Ψn(x)→ x in ∥ ⋅ ∥2 as n→∞.
Since M is diffuse there is a sequence of unitaries (un)n in M such that un → 0 weakly as n →∞.
By property (T), there is some N ∈ N such that ∥ΨN(un) − un∥2

2 < 1/2 for all n ∈ N. Denote by A
the finite dimensional image of ΨN . Because (un)n goes to 0 weakly, there is some M ∈ N such that
∣τ(uMx)∣ < 1/4 for all x ∈ A. But this implies

∥ΨN(uM) − uM∥2
2 = ∥ΨN(uM)∥2

2 + ∥uM∥2
2 − 2Reτ(Ψ(u∗M)uM) > 0 + 1 − 2

1

4
= 1

2
,

contradicting ∥ΨN(un) − un∥2
2 < 1/2. We have shown that M cannot be diffuse, which finishes the

proof.

4 Absence of finite von Neumann algebra representations of simple
Howe-Moore groups

Theorem 8 (Recall). Let G be a non-discrete totally disconnected simple group with the Howe-
Moore property. Then there is no non-trivial continuous homomorphism of G into the unitary group
of a finite von Neumann algebra.

Proof. Let π ∶ G → U(M) be a non-degenerate representation of G into a finite von Neumann
algebra. Let z ∈ Z(M) be the maximal central projection such that π(G)′′z = zC1. Replacing M
by (1− z)M , we have to show that there is a non-trivial central projection in Z(M) under which π
is trivial.

Since G is totally disconnected the space

{ξ ∈ L2(M) ∣ ξ is K-invariant for some K ≤ G compact open}

is dense in L2(M). Hence there is a compact open subgroup K ≤ G and a K-invariant vector
ξ ∈ L2(M) such that ∥ξ − 1̂∥2 < 1/4. It follows that the positive type function

ϕ ∶ g ↦ ⟨π(g)ξ, ξ⟩

satisfies ∣ϕ(gh) − ϕ(hg)∣ < 1/2. Moreover, ϕ is identically 1 on K.

4



Since G is simple and K is commensurated by G, [BH89, Theorem 3] implies that the set
{[K ∶K ∩ gKg−1] ∣ g ∈ G} is unbounded. If follows that ⋃g∈G gKg−1 can not be covered by finitely
many cosets of K and it is hence not compact. Since ϕ(⋃g∈G gKg−1) ⊂ (1/2,1], the representation
π is not mixing. Using the Howe-Moore property, we infer that there is a non-zero G-fixed vector ξ
for π.

Now let p ∈ B(L2(M)) be the projection onto the G-invariant vectors. We already saw that p ≠ 0.
Moreover, p is invariant under multiplication by elements from M = π(G)′′ and M ′ = π(G)′. So
p ∈ Z(M). Since π(g)p = p for all g ∈ G, we found a non-zero central projection in M under which
π is trivial. This finishes the proof.
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